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Nu mer i cal sim u la tions are con ducted for two-di men sional steady-state dou ble dif -
fu sive flow in a trap e zoidal po rous cav ity, sub mit ted to ax ial mag netic field. The
Darcy equa tion, in clud ing Brinkmamn and Forchheimer terms ac count for vis cous
and in er tia ef fects, re spec tively is used for the mo men tum equa tion, and a
SIMPLER al go rithm, based on fi nite vol ume ap proach is used to solve the pres -
sure-ve loc ity cou pling. An ex ten sive se ries of nu mer i cal sim u la tions is con ducted in 
the range: 103 £ Ra £ 106, 1 £ Ha £ 102, Da =10–5, N = 1, and Le = 10. It is shown
that the ap pli ca tion of a trans verse mag netic field nor mal to the flow di rec tion de -
creases the Nusselt num ber and Sherwood num ber. Il lus tra tive graphs are pre -
sented.

Key words: double diffusion, porous media, heat and mass transfer, magneto-
hydrodynamics, finite vol ume method

In tro duc tion

Dou ble-dif fu sive nat u ral con vec tion in po rous me dia has re ceived con sid er able at ten -
tion due to its nu mer ous ap pli ca tions in geo phys ics and en ergy re lated en gi neer ing prob lems.
Such types of ap pli ca tions in clude nat u ral cir cu la tion in iso ther mal res er voirs, aqui fers, po rous
in su la tion, heat stor age beds, grain stor age, ex trac tion of geo ther mal en ergy, and ther mal in su la -
tion de sign, etc. One im por tant ex am ple of dou ble-dif fu sive con vec tion can be found in ma te rial 
so lid ify pro cesses. Since so lid i fi ca tion of al loys and crys tals nec es sary in volves the si mul ta -
neous flows of mo men tum, heat, and sol ute. The ap pear ance of ther mal and con cen tra tion gra di -
ents near the solid-liq uid in ter face can causes a uni form den sity dis tri bu tion and con vec tion-dif -
fu sion mo tion there, which may have a pro found ef fects on the solid struc ture as it is crys tal lized 
from the liq uid state. Elec tro mag netic field has been used in the metal in dus try to con trol micro -
struc tures so lid i fi ca tion and to re duce or elim i nate nat u ral con vec tion in the melt. In crys tal
growth pro cess, the ob jec tive is to ad just the pro cess and char ac ter is tics of the mag netic filed in
or der to elim i nate the del e te ri ous un steadi ness in the melt mo tion and to achieve a steady melt
mo tion which pro duces uni form and con trol la ble dop ant and con tam i nant con cen tra tions in the
crys tal. A ma jor ad van tage of a mag netic field is that it can be tai lored to achieve dif fer ent field
strengths and ori en ta tions at dif fer ent po si tions in the melt and at dif fer ent stages dur ing the
growth of a crys tal.

The com bined heat and mass trans fer in po rous me dia is lim ited, be cause of com plex i -
ties in volved in dou ble-dif fu sive nat u ral con vec tion. Most of pre vi ous stud ies in this topic use
Darcy’s law for solv ing flow within the po rous me dium. Nat u ral con vec tion of heat and mass
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trans fer in a square po rous cav ity sub jected to con stant tem per a ture and con cen tra tion has been
in ves ti gated by Trevisian et al. [1]. The au thors use the Darcy’s model for mod el ing the flow in
po rous me dium. The nu mer i cal study has been car ried out for a given range of Darcy-Ray leigh
num ber, Lewis num ber, and buoy ancy ra tio. Lage [2] stud ied the ef fect of the con vec tive in er tia
term on Benard con vec tion in a po rous me dium. The au thor shows that in er tia term in cluded in
the gen eral mo men tum equa tion has no ef fect on the over all heat trans fer. Agrawal et al. [3] dis -
cussed ther mal and mass dif fu sion on hydromagnetic viscoelastic nat u ral con vec tion past an im -
pul sively started in fi nite plate in the pres ence of a trans verse mag netic filed. Helmy [4] stud ied
the un steady lam i nar free con vec tion flow of an elec tri cally con duct ing fluid through a po rous
me dium bounded by an in fi nite ver ti cal plane sur face of con stant tem per a ture. Shanker et al. [5]
pre sented the ef fect of mass trans fer on the MHD flow past an im pul sively started in fi nite ver ti -
cal plate. Ram et al. [6] stud ied the MHD free con vec tion flow past an im pul sive started ver ti cal
in fi nite plate when a strong mag netic field of uni form strength was ap plied trans versely to the
di rec tion of flow. The first work in MHD us ing the state space ap proach was done by Ezzat
[7-9], where the heated ver ti cal plate prob lem was solved us ing a nu mer i cal in verse Laplace
trans form. Ezzat et al. [8] for mu lated the state space ap proach for the one-di men sional prob lem
of viscoelastic magnetohydrodynamic un steady free con vec tion flow with the ef fects on a
viscoelastic bound ary layer flow with one re lax ation time. Bian et al. [10] con sid ered the in ter -
ac tion of an ex ter nal mag netic field with con vec tion cur rents in a po rous me dium. The po rous
me dium was mod eled ac cord ing to Darcy’s model. It is found that the ap pli ca tion of a mag netic
filed, mod i fies the tem per a ture and flow fields sig nif i cantly. The pur pose of the pres ent pa per is
to study the dou ble-dif fu sive nat u ral con vec tion flow be hav iour and its ef fects on heat and mass
trans fer in a trap e zoidal po rous cav ity sub mit ted to trans verse mag netic filed. The flow is mod -
eled us ing the gen er al ized model of Darcy-Brink man-Forchheimer. Thermosolutal heat trans fer 
within trap e zoidal cav ity heated at the bot tom and cooled at the in clined top part was in ves ti -
gated by Boussaid et al. [11]. The con vec tive heat trans port equa tion was solved by al ter nat ing
di rec tion im plicit (ADI) method com bined with a fourth-or der com pact Hermitian method.
Natarajan et al. [12] ana lysed the nat u ral con vec tion flow within a trap e zoidal en clo sure where
the bot tom wall is heated (uni formly and non-uni formly) and ver ti cal walls are cooled by means
of a con stant tem per a ture bath whereas the top wall is well in su lated. The con sis tent pen alty fi -
nite el e ment method has been used to solve the non-lin ear-cou pled par tial dif fer en tial equa tions
for flow and tem per a ture fields with both uni form and non-uni form tem per a ture dis tri bu tions
pre scribed at the bot tom wall. The ef fect of Prandtl num ber in the vari a tion of lo cal and av er age
Nusselt num bers was found to be more sig nif i cant for Prandtl num bers in the range 0.07-0.7
than 10-100. Baytas et al. [13] stud ied the nat u ral con vec tion flow be hav iour and its ef fects on
the heat trans fer and tem per a ture dis tri bu tion within a non-rect an gu lar en clo sure filled with a
po rous me dium and which is in clined with an ar bi trary an gle from the ver ti cal. The en clo sure
cho sen is of trap e zoidal cross-sec tion with par al leled cy lin dri cal top and bot tom walls at dif fer -
ent tem per a tures and plane adi a batic side walls. Flow and heat trans fer char ac ter is tics (stream
lines, iso therms, and av er age Nusselt num bers) are in ves ti gated for a wide range val ues of the
Ray leigh num ber, in clined an gle and cav ity as pect ra tio.

Prob lem def i ni tion and gov ern ing equa tions

The prob lem con sid ered is a two-di men sional nat u ral con vec tion flow in a trap e zoidal
po rous cav ity filled with a bi nary fluid, see fig. 1. Dif fer ent types of bound ary con di tions have
been em ployed. Dirichlet con di tions are pre scribed along the top and the bot tom sur faces for
tem per a ture and con cen tra tion. On both left and right sur faces, Neuman, i. e., zero gra di ent con -
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di tions are as signed to tem per a ture and con cen tra tion. A uni form mag netic field is ap plied
transversally. Both ve loc ity com po nents are equal to zero on bound aries.

For sim pler anal y sis, some as sump tions are made:

– the binary fluid is assumed to be Newtonian incompressible and to satisfy the Boussinesq
approximation,

– the flow in the cavity is laminar and two-dimensional,
– the porous medium is supposed to be isotropic homogeneous and in thermodynamic

equilibrium with the binary fluid,
– the Soret and Dufour effects are neglected, and
– the magnetic Reynolds number of the fluid is neglected.

Then ap ply ing the the o rem of con ser va tion and in tro duc ing the dimensionless pa ram -
e ters as given be low:
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We ob tain the fol low ing dimensionless gov ern ing equa tions as given also by Lage [2]:
–  con ti nu ity equa tion
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Fig ure 1. The phys i cal model and co or di nate sys tem



–  en ergy equa tion
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The ini tial and bound ary con di tions for the dimensionless equa tions are:
–  ini tial con di tion (at t = 0)
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–  bound ary con di tions
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Nu mer i cal pro ce dure

The cou pled tran sient equa tions are solved to ob tain a steady-state so lu tion. When a
con ver gent re sult is ap proached, the tran sient terms van ish and the steady-state equa tions are
solved. The dif fer en tial equa tions are discretised in space with the con trol-vol ume fi nite dif fer -
ence method de scribed by Patankar [14]. The re sult ing fi nite dif fer ence scheme has the form:

Apjp = AEjE + AWjW + ANjN + ASjS + S (8)

Ex pres sions for the co ef fi cients in eq. (8) may be found in ref er ence [14]. The
advection-dif fu sion part of the co ef fi cients AE, AW, AN, and AS is mod i fied for sta bil ity ac cord -
ing to the power law scheme. The source term S in cludes the val ues of at pre vi ous time step. The
discretisation tech nique is well known and S de tailed de scrip tion is not needed. The lin ear sys -
tem de rived from the con ser va tion equa tions are solved us ing line-by-line method. As the mo -
men tum equa tion is for mu lated in terms of the prim i tive vari ables (U, V, P) the it er a tive pro ce -
dure in cludes a pres sure cor rec tion cal cu la tion method to solve the pres sure-ve loc ity cou pling
(the SIMPLER tech nique [14]). The sim u la tions are gen er ally per formed us ing 101 ´ 101 si nu -
soi dal grid. It is re al ized that this rel a tively coarse grid is ad e quate to re solve all de tails of the
flow struc tures in the cav ity. The se lected mesh size should only be viewed as a com pro mise be -
tween ac cu racy and com pu ta tional time. The con ver gence of the nu mer i cal so lu tion was mon i -
tored lo cally. The max-norm was used for the ve loc ity com po nents U, V, tem per a ture Q, and
con cen tra tion F the con ver gence cri te rion at each time step is:
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in which i and i + 1 de note two con sec u tive it er a tions at the same time step.
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The av er age heat and mass trans fer at the walls are given in dimensionless terms by the 
Nusselt and Sherwood num bers de fined as:
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Test val i da tion

The nu mer i cal ac cu racy of
the pres ent study has been
checked over a large num ber of
purely ther mal con vec tion in a
square fully po rous cav ity, the
re sults has been com pared with
the re sults of ear lier stud ies in
tabs. 1 and 2, for the Darcy and
com bined Darcy-Brink man rep -
re sen ta tion of the po rous me -
dium flow. The val i da tion is per -
formed us ing 81 ´ 81 si nu soi dal
grid. It may be seen from the re -
sults, that the agree ment with ref -
er ences (Lauriat et al. [15];
Nithiarasu et al. [16]) is ex cel lent in most cases. In deed, our re sults pres ent a dif fer ence less than 
2% in com par i son with Nithiarasu et al. [16] re sults.

Re sults and dis cus sion

The ob jec tive in this sec tion is to pres ent a sam ple of re sults in or der to il lus trate the ef -
fect of Ray leigh num ber (Ra) and Hartman num ber (Ha) on the cell for ma tion pro cesses and heat
and mass trans fer char ac ter is tics. This study is lim ited to fluid with Prandtl num ber Pr = 0.149
that correspond to a ti ta nium based al loy and Lewis num ber Le = 10. The con duc tiv ity ra tio is  l = 1
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Ta ble 1. Darcy model (pure heat trans fer, N = 0)

Nu0

Ra* = RatDa Lauriat et al.
[15]

Nithiarasu et al.
[16]

Pres ent work

10 1.07 1.08 1.06

50 – 1.958 1.936

100 3.09 3.2 2.98

500 – 8.38 8.32

1000 13.41 12.514 12.49

Ta ble 2. Darcy-Brink man model (pure heat trans fer, N = 0, Pr = 1)

Nu0

Ra* = RatDa Da Lauriat et al. [15] Nithiarasu et al. [16] Pres ent work

10 10–6 1.07 1.08 1.06

100 10–6 3.06 3.00 2.98

1000 10–6 13.2 12.25 12.11

10 10–2 1.02 1.02 0.99

100 10–2 1.7 1.71 1.68

1000 10–2 4.26 4.26 4.24



and the rep re sen ta tive po ros ity is fixed to e = 0.4 for po rous me dium. The in er tia pa ram e ter Cf is
cal cu lated us ing the Ergun model [17] Cf = 1.75/(150 e3)1/2  which means that in the pres ent case
Cf = 0.56.

In flu ence of Ray leigh num ber

In fig. 2, the ef fect of Ray leigh num ber is il lus trated for A = 1, Da = 10–5, N = 1, and
Le  = 10. The re sults are pre sented in terms of ve loc ity vec tors, iso therms and iso-con cen tra tion
con tours for dif fer ent val ues of Ray leigh num ber. The flow di rec tions in the graphs can be eas ily 
iden ti fied. Due to the ther mal and solutal bound ary con di tions con sid ered here, the bot tom wall
has a higher tem per a ture and con cen tra tion as the top in clined wall. As a re sult, the di rec tion of
the flow is coun ter clock wise. As the Ray leigh num ber is in creased, both tem per a ture and solutal 
buoy ancy are aug ment ing each other and thus they ac cel er ate the flow coun ter clock wise.
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Fig ure 2. Ve loc ity-vec tors, iso therms, and isoconcentrations vs. Ray leigh num ber; Pr = 0.149
Ha = 0,  Da = 10–5, N = 1, Le = 10



In flu ence of Hartman num ber

Fig ure 3 il lus trates typ i cal stream lines, ve loc ity vec tors, iso therms, and con cen tra tion
lines for Ra = 105, Da = 10–5, Pr = 0.149, Le = 10, N = 1, and Ha = 0, 40, and 80, re spec tively. The 
in flu ence of a mag netic field is ap par ent from this fig ure. Figure 3a shows the re sults ob tained
for Ha = 0 ”ab sence of mag netic field”. The flow, iso therms and isoconcentrations are sim i lar to
those ob tained by other in ves ti ga tors [18]. The re sult ing flow re gime is char ac ter ized by a
bound ary layer of con stant thick ness. Also, the par al lel ism of the flow and the ex is tence of lin -
ear ther mal and solutal strat i fi ca tion are clearly il lus trated. Due to the ther mal and solutal
bound ary con di tions con sid ered here, the bot tom wall has a higher tem per a ture and con cen tra -
tion as the top in clined wall. As a re sult, the di rec tion of the flow is coun ter clock wise. When the
mag netic field is ap plied, the flow re cal cu la tion is pro gres sively in hib ited by the re tard ing ef fect 
of the elec tro mag netic body force (figs. 3b and 3c). More quan ti ta tive com par i son are pre sented
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Fig ure 3. Ve loc ity-vec tors, iso therms, and isoconcentrations vs. Hartman num ber; Pr = 0.149,
Ra = 105, Da = 10–5, N = 1, Le = 10



here in terms of 
r
V-ve loc ity, tem per a ture, and 

sol ute pro files. All the pro files are plot ted
along the mid dle hor i zon tal line of the en clo -
sure, i. e., along the line of Y = 0.5. 

Fig ure 4 com pare pro files ob tained for
Da = 10–5  at  dif fer ent  Hartman  num bers
Ha = 0, 20, and 60. The ef fect of Hartman
num ber on the con vec tion field is well re -
flected by the pro gres sive re duc tion of the
ve loc ity, tem per a ture and sol ute con cen -
tra tion gra di ents as the Hartman num ber is
in creased.

An other view of the ef fect of Hartman on
heat and mass trans fer is found in fig. 5,
where Nusselt and Sherwood num bers are
plot ted as a func tion of Ha. The anal y sis of
this fig ure in di cates that for small val ues of
Ha, the bound ary layer re gime pre vails. As
the Hartman num ber in creases, the elec tro -
mag netic body force in creases which sup -
presses pro gres sively the strength of the con -
vec tive mo tion, and thus bound ary layer
re gime is fol lowed by the dou ble dif fu sive
re gime for which Nusselt and Sherwood
num bers tend to one.

Con clu sions

Dou ble-dif fu sive nat u ral con vec tion in trap e zoidal po rous cav ity, with trans verse
mag netic field has been stud ied nu mer i cally. The pres ent model has been suc cess fully val i dated
with re sults of ref er ences. The con vec tive of heat and mass trans fer is strongly in hib ited with in -
creas ing mag netic field. The over all heat and mass trans fers de crease for in creas ing mag netic
filed.
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Fig ure 4. Ef fect of Hartman num ber on so lu tion
pro files along midplan; Y = 0.5, Pr = 0.149, Ra = 105,
Da = 10–5, N = 1, Le = 10

Fig ure 5. Ef fect of Hartman num ber on the
Nusselt and Sherwood num bers; Pr = 0.149,
Ra = 105, Da = 10–5, N = 1, Le = 10



The pres ent anal y sis is fo cused on the in flu ence of a lim ited num ber of dimensionless
pa ram e ters. As an ex ten sion of this work, it is par tic u larly rel e vant to take into ac count the buoy -
ancy ra tio (N), the Prandtl num ber (Pr), the Lewis num ber (Le), and cor re late heat and mass
trans fer.
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Ha – Hartman number [= 

r
B e(sH/n)1/2], [–]

K – permeability, [m2]
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Le – Lewis number (= Pr Sc), [–] 
N – buoyancy ratio (= GrS/GrT), [–]
Nu0 – overall Nusselt number, [–]
Pr – Prandtl number (= n/a)
Ra – Rayleigh number (= GrTPr), [–]
Sc – Schmidt number (= n/D), [–]
Sh0 – overall Sherwood number, [–]
T – temperature, [K]
DT – temperature difference between plates

(= T1 – T2), [K]
t –  time, [s]
U, V – dimensionless velocity in (X, Y) direction, [–]
u, v – velocityes in x, y direction, [ms–1]r
V – velocity vector, [ms–1]

X, Y – dimensionless Cartesian coordinate, [–]
x, y –  Cartesian coordinate, [m]

Greek let ters

a – thermal diffusivity, [m2s–1]
bS – isobaric coefficient of solutal expansion

fluid, [–]
bT – isobaric coefficient of thermal expansion

fluid, [–]
e – porous media porosity, [–]
Q – dimensionless temperature, [–]
l – conductivity ratio
n – kinematic viscosity, [m2s–1]
r – density, [kgm–3]
s – electrical conductivity of the liquid, [sm–1]
t – dimensionless time, [–]
F – dimensionless concentration

{=[C – (C1  + C2)/2]/DC}, [–]

Sub scripts

f – fluid
p –  porous media
1 – heated surface
2 – cooled surface
0 – average value

Su per scripts

i – time iteration
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