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This paper deals with the transient thermal analysis of carbon nanotube composites
via meshless element free Galerkin method. A three-dimensional representative
volume element containing single nanotube has been taken as model for these simu-
lations. Essential boundary conditions have been enforced via penalty approach.
Simulations using continuum mechanics have been carried out for two different val-
ues of nanotube length. Backward difference and Galerkin approaches have been
utilized for time approximation, and the results obtained by backward difference
method are compared with those obtained by Galerkin approach.
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Introduction

Carbon nanotubes (CNTs), due to their unique structure, remarkable properties and
wide range of applications, have attracted much attention in recent years [ 1-5]. Carbon nanotube
reinforced composites is one of their many applications.

Thermally and electrically conductive polymer composites are widely used in the elec-
tronics, automotive, and aerospace industries to dissipate heat and prevent the storage of static
charge. Carbon fibers or copper wires are typically used as fillers for this purpose; however the
requirement of high loadings often produces the harmful effect on the mechanical properties of
the matrix. Therefore, high aspect ratio and highly conductive materials such as CNTs are re-
garded as promising fillers due to their superior properties as compared to conventional carbon
fibers. The rapid advancement in the bulk synthesis of CNTs makes it possible to produce
CNTs-based composites. Many believe that the reinforcement of CNTs in polymer matrix may
provide us an entirely new class of materials. Therefore, the study of thermal behavior of carbon
nanotube composites becomes an obvious choice. In past, some studies based on numerical sim-
ulations have been carried out to predict the thermal properties of nano-composites using con-
tinuum mechanics approach [6-12]. Nishimura and Liu [6] applied the boundary integral equa-
tion method for prediction the thermal behavior of CNT based nano-composites. They solved a
heat conduction problem in 2-D infinite domain embedded with many rigid inclusions by fast
multipole boundary element method. Zhang ef al. [ 7-8] used the meshless hybrid boundary node
method for the thermal simulation of carbon nanotube composites. Song and Youn [9] evaluated
the effective thermal conductivity of the carbon nanotube/polymer composites by control vol-
ume finite element method. Singh et al. [10-12] applied the meshless element free Galerkin
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method to study the thermal behavior of CNT-composites. Ang et al. [13] assumed that CNT be-
haves as a thermal superconductor inside polymer matrix for the thermal analysis of carbon
nanotube composites, and developed an analytical solution using Bessel functions.

CNTs and their composites may have various applications in near future where it’s
necessary to study their transient behavior before real engineering and industrial applications
such as electrodes in gas discharge tubes, solid state devices (diode, transistor, MOSFET), elec-
trical elements (resistor, inductor, and capacitor) but so far, the numerical studies were limited to
predict the steady-state thermal behavior of CNT-composites [6-12]. Therefore, in the present
work, mesh-free element free Galerkin method has been applied for the transient thermal simu-
lation of CNT-composites. Nanoscale square representative volume element (RVEs) containing
single CNT have been taken for thermal analysis. Time approximation has been performed by
backward difference and Galerkin approaches, and the results obtained by backward difference
method are compared with those obtained by Galerkin approach.

Review of element free Galerkin method

The discretization of governing equations by element free Galerkin (EFG) method re-
quires a moving least square (MLS) approximation scheme, which consist of three components:
a weight function associated with each node, a basis function, and a set of non-constant coeffi-
cients. Using MLS approximation scheme, an unknown function of temperature 7(x) is approxi-
mated with 7"(x) given by [10-12]:

T (x)= 3 ®,(0)7T, =D(x)T (1)
=1
where, x'=[x, y, z], T; are nodal parameters, and @ (x) is the shape function, which is defined as:
m' B(x) B.
D.(x) = (X =pl L 2a
i (%) Elpj( )L(x) ‘,- pr (2a)
where /
A) = Zw(x =x)p (x)p7 (x)) (2b)
Bx) =[wx =x)p(x; ), w(x —x;)p(x;),...,w(x —x,)p(x,)] (2¢)
The cubicspline weight function [14] has been used in this work, which is given as:
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where s is the normalized radius.
At any point x, a tensor product weight function is computed as:

X —=X;| | V=W
w(x—xl-):f| |f|—| (3b)
dmxi dmyi
where d,; = daxCxis Ay = TinaxCyis Tinzi = AmaxCris Amax = Scaling parameter that defines the size of

the domain of influence, and ¢ and c,; at node i are the distances to the nearest neighbors

Xi? cy[’
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denoted by ¢,; = max ; |x; —x; |, Cyi = max|yl. - yj| ,and ¢,; = max ‘zi -z | The full details of

EFG method can be found in [15].
Numerical implementation

A square RVE containing single nanotube (fig. 1) have been taken as a model for the
transient thermal analysis of carbon nanotube composites. Perfect interface has been assumed
between nanotube and polymer matrix in the present simulations. The nanotube has been placed
in square RVE such that the axis of nanotube coincides with the axis of square RVE. Two oppo-
site surfaces of the RVE are maintained at two different constant temperatures i. e. 7| and 7, re-
spectively, while other surfaces are kept insulated.

Figure 1. CNT-composite model along
with its dimensions

Hy
— L
The governing heat conduction equation in Cartesian coordinate system is given as:
ox\ ' Ox oy\ 0y ) 0z\ 0Oz ot
along with following essential boundary conditions:
T0yz)=T, (4b)
Lyz)=T, (4¢)

The weighted integral form of eq. (4a) is given as:
jw i[km i)+i k, K +i(km a_Tj—ch' av +
v ox ox oy oy ) 0Oz Oz

+JVV i(kca_Tj+i(kCa—T]+i(kca—Tj—ch' dr=0 (5)
7 0x Ox ) 0Oy dy ) Oz oz
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Using divergence theorem, the weak form of eq. (5) is obtained as:

j OWy OF 0Wy OF 0W, O 5, ¢ 7 lav+
ox ox oy " ay 0oz ~ Oz
w, 0T 8 or ow, oT ©
j e, o+ D%, S8 —Sipe, T |dV =0
6x “ox 8y oy 0z 0Oz
From eq. (6), the functional /(T) can be obtained as:
2
I(T) = j (aTj k| 2L +km(aTj dV+jpmcmTTdV+
ox oy Oz
(7

2
+jl kc[a_Tj +k{3_TJ +kc(aT] dV+IpCc I7dv
72 ox oy oz

Enforcing essential boundary conditions using penalty method, the functional 7*(T) is
obtained as:

2
I'(T)= j m(aT) +k, or +km(aTj dV+jpmcmTTdV+
72 ox oy oz
|, (erY ,(orY , (or
+j— kc(—) +kc(—] +kc[ j dV+prc TTdV + 3
14.2 ox oy oz

+ 4 (T -1)2dS + < [(T - T,)2dS
25 23,

Taking variation of 7 “(T), eq. (8) is written by:
T T T
1" (T)= | km(a—T] 5(6—T]+km[a—Tj 5[8—Tj+km(a—Tj 5(”} v +
v ox ox oy oy 0z 0z
T T T
P o
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+ [ P TSTAV + [p.c, TSTAV +& [(T —T,)5TdS +& [(T —T,)3TdS
v, v, S, S,

Setting d/*(T) = 0 for arbitrary 5T 'in eq. (9), results in the following set of linear equa-

tions
KT+ MT =f (10a)
where T T
o, [k, 0 oo, Dy | |k 0 0D,
Ky=[lo, | |0 &k, 0@, |dr+[lo, |0 k 0|d;, |dV+
o, | o 0 k|, Mo, | [0 0 k|o,. (10b)

+j&chTcDj ds + j&cD{cDde
S, )

M, =V; PuCn®@ D, dV +VjpccCch.T(DjdV (10c)
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f; :J&TldﬁidSJrSj&TchidS (10d)
Using a-family of approxim;ltion scheme fzor time discretization, the eq. (10a) is modi-

fied as:
(K + M)T"+ =R7 (11a)

where
R" =[M —(1-a)AtKT" +Atf and K =aAtK (11c)

Assuming material properties as homogeneous and independent of temperature, the
thermal conductivities of the composite in longitudinal direction of nanotube has been evalu-
ated as:

q avg L b
e n; (12)
where k_ denote the equivalent thermal conductivities of the composite in longitudinal direction,
Ly is the length, g,,, is the average normal heat flux, AT is the temperature difference between
two opposite ends, S, and S, (egs. 8, 9, 10b, and 10d) indicate the left and right surfaces of the
square RVE on which temperature is applied.

Numerical results and discussion

For transient simulations, a model CNT-composite problem has been solved by EFG
method. Penalty approach has been used to enforce boundary conditions i. e. constant temper-
atures at two square surfaces of RVE. The simulations have been carried out for two different
values of nanotube length. Three point Gauss quadrature scheme has been used for the numer-
ical integration of Galerkin weak form. Both nanotube and matrix domains have been
discretized using non-uniform nodal distribution schemes. The time discretization has been
performed by both backward difference and Galerkin approaches. The following data has
been used for nanotube [12, 16] and PEEK polymer matrix [17] along with other dimensions:
k,=0.25 W/mK, p,, = 1320 kg/m?, ¢,, =335 J/kgK, k. =3000 W/mK, p,=2600 kg/m’, ¢, =
=500 J/kgK, Ly=10pm, L,=6and 8um, H, =W, =40nm, r,=10nm, 7, =300 K, and 7, =
=100 K.

The results presented in fig. 2 have been obtained for two values of nanotube length i. e.
L.=6and 8 um at the location y = W, /2, z= H,, and it shows a transient temperature distribution at
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Figure 2. Transient temperature distribution at y = W},/2, z = H,, for various values of time
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t=4,8,15,25,and 50 ps for L, =6 umand at#=2.5,5, 10, 20, and 50 us for L, = 8 um. The similar
types of results have been presented in fig. 3 at another location (v = W,/2, z = 0.8 H,). Figure 4
shows a transient temperature distribution on the CNT surface for L, = 6 and 8 pm. The results pre-
sented in fig. 5 have been obtained at locationx =L,/ 2+ L,y = W,/2, and it shows the temperature
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o 260 o 260
= 5 B
8 240 | & 2401 1
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100 : : L : — = 100 - ; : . L ;
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RVE length, L, [um] RVE length, L, [um]
Figure 3. Transient temperature distribution at y = W,/2, z = 0.8 H}, for various values of time
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Figure 4. Transient temperature distribution at CNT surface for various values of time
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Figure 5. Transient temperature distribution at x = L,/2, y = W}/2 for various values of time
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Figure 6. Transient temperature distribution at x = L,, y = W},/2 for various values of time

distribution at#= 4, 8, 15, 25, and 50 pus for L, =6 um, and at=2.5, 5, 10, 20, and 50 us for L =
= 8um. The similar typesof results have been presented in fig. 6 at the location (x= L,, y=
=W,/2), in fig. 7 at the location x =L, +L/2, y=W,/2,in fig. 8 at the locationx=L,+ L, y=
=W,/2,and in fig. 9 at the location (x=L, —L,/2,y=W,/2). Figure 10 presents the variation of av-
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Figure 7. Transient temperature distribution at x =L, + L./2, y = W},/2 for various values of time
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Figure 8. Transient temperature distribution at x =L, + L., y = W}/2 for various values of time
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Figure 9. Transient temperature distribution at x = L, — L,/2, y = W},/2 for various values of time
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Figure 10. The variation of average heat flux with time on right RVE surface

erage heat flux obtained by backward difference and Galerkin approaches with time () for L, =6
and 8 um, whereas fig. 11 shows the variation of k/k,, obtained by backward difference and
Galerkin approaches with time for the same values of L. From the results presented in figs. 2-11, it
can be concluded that the results obtained by backward different scheme are almost same as those
obtained by Galerkin approach.
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Figure 11. The variation of equivalent thermal conductivity of the composite with time
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Conclusions

In this paper, transient thermal analysis of carbon nanotube composites was performed
via meshless element free Galerkin method. A three-dimensional representative volume ele-
ment containing single nanotube was taken as model for the transient thermal simulation. Essen-
tial boundary conditions were enforced by penalty approach. Simulations were carried out using
continuum mechanics approach for two different values of nanotube length. Backward differ-
ence and Galerkin approaches were utilized for the approximation of time. The results obtained
by backward difference method were compared with those obtained by Galerkin approach, and
were found in good agreement with each other. This work can be extended further for the tran-
sient thermal analysis of CNT-composites containing carbon nanotubes randomly distributed in
polymer matrix. Moreover, this analysis can be very useful in the preparation and selection of
composite materials for electrical and electronic devices.
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Nomenclature

. — specific heat of nanotube, [Jkg 'K '] Vi — matrix domain

Cm — specific heat of polymer matrix (PEEK), w — weight function used in MLS
[Jkg'K™] approximation

k, — thermal conductivity of nanotube, % — weighting function used in weighted
[Wm 'K integral form

ke — equivalent thermal conductivity of

composite, [Wm 'K ™']

Greek letters

ko, — thermal conductivities of polymer matrix
(PEEK), [Wm 'K™'] S .
Ly — length of square RVE, [nm] a — parameter used in time integration
L, — nanotube length, [nm] N schemes
! i ; ; a — penalty parameter
m — number of terms in basis function " density of nanotube, [kgm ]
n — number of nodes in the domain of Pe ensity ol nanotube, |kg|
influence Pm - den51gf of polymer matrix (PEEK),
i — times step number - [Egm f] ‘
pfx) — monomial basis function ®,(x) — shape function
Gavg ~ — normal heat flux, [Wm ] Subscri
7y — nanotube, [nm] uoscripts
THx) — MLS approximation function for
temperature c — nanotube
V. — nanotube domain m — matrix
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