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Stresses for the elastic-plastic transition and fully plastic state have been
derived for a thin rotating disc with shaft at different temperatures and re-
sults have been discussed and depicted graphically. It has been observed
that the rotating disc with inclusion and made of compressible material re-
quires lesser angular speed to yield at the internal surface and higher per-
centage increase in angular speed to become fully plastic as compare to
disc made of incompressible material. With the introduction of thermal ef-
fect the rotating disc with inclusion required lesser angular speed to yield at
the internal surface. Rotating disc made of compressible material with in-
clusion requires higher percentage increase in angular speed to become
fully-plastic as compare to disc made of incompressible material. Thermal
effect also increases the values of radial and circumferential stresses at the
internal surface for fully-plastic state.
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Introduction

Rotating discs are an essential part of the rotating machinery structure, e. g. ro-
tors, turbines, compressors, flywheel, and computer’s disc drive. The stress analysis of
thin rotating discs made of isotropic material has been discussed extensively by
Timoshenko and Goodier [1] in the elastic range and by Chakrabarty [2] and Heyman [3]
for the plastic range. Their solutions for the problem of fully plastic state do not involve
the plane stress condition, that is to say, one can obtain the same stresses and angular
speed necessary for fully plastic stress of the disc without using the plane stress condition
(i. e. T,,=0). Gupta and Shukla [4] obtained a different solution for the fully plastic state
by using Seth’s transition theory [5] and plane stress condition. This theory does not re-
quired any assumptions like an yield condition or incompressibility condition and thus
poses and solves a more general problem from which cases pertaining to the above as-
sumptions can be worked out. It utilizes the concept of generalized strain measure and as-
ymptotic solution at critical points or turning points of the differential equations defining
the deformed field and has been successfully applied to a large number of problems [4,
7-14, 16].
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Seth [6] has defined the generalized principal strain measure as:
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dey =—[1-(1-2¢;)], (i=123) (1)

where 7 is the measure and gii are the Almansi finite strain components [6].
In this paper, we investigate the problem of “thermo elastic-plastic transition in
a thin rotating disc with shaft” by using Seth’s transition theory. Results have been dis-

cussed and depicted graphically.
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Figure 1. Geometry of rotating disc
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We consider a thin annular disc with central
bore of radius a and outer radius b (fig. 1). The
disc, produced of material of constant density, is
mounted on a rigid shaft.

The disc is rotating with angular speed ®
about a central axis perpendicular to its plane. The
thickness of disc is assumed to be constant and is
taken sufficiently small so that the disc is effec-
tively in a state of plane stress, that is, the axial
stress T, is zero. The temperature at the central
bore of the disc is ©.

The displacement components in cylindrical
polar co-ordinates are given by [6]:

u=r(l-p), v=0, w=dz (2)

where [ is position function, depending on
r=(x2+ y2)V/2 only, and d is a constant.

The finite strain components are given by Seth
[6] as:
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where ' = dB/dr and meaning of superscripts A is Almansi. Substituting egs. (3) in eq.
(1), the generalized components of strain are:

1 :
en =—11= (' +5)"]
1
€ =—(1—p"
00 n ( ,B ) (4)
¢ =211~ -d)"]
n
€ =€z = €y =0
The stress-strain relation for thermo elastic isotropic material are given by [17]:

EJ = 2'S‘JII + Zlueij 75851']3 (1’.] = 17 27 3) (5)

where Tj; are the stress components, A and i are Lame’s constants, /; = ey is the first
strain invariant, &;; is the Kronecker’s delta, & = (34 +2u), o being the coefficient of
thermal expansion, and @ is the temperature. Further, ® has to satisfy:

VO =0

d2e 1420 1 d[ d@j
~|r =0

&2 rdrr rdrl dr
or ® K
which has solutions: dr r
O=k, (logr + k) (6)

where k| and k, are constants of integration and can determined from the boundary
condition.
Equation (5) for this problem become:

2 0 2uéO
= e, +ey)+2ue, —
T l+2,u( Ir 99) He /1+2y
21 2uEO
Tyo = e, +ey)+2ey —
00 ﬂ,+2,u( it o) 00 1 +2u (7)
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Substituting egs. (4) in eq. (5), the strain components in terms of stresses are ob-
tained as [15]:

105



THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118
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where E is the Young’s modulus and C is the compressibility factor of the material in term
of Lame’s constant, and are given by £ =uBA +2u)/ (A +u)and C =2u / (A +2u).
Substituting egs. (4) in egs. (7), we get:
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All equations of equilibrium are satisfied except:
d 2,2
dr
where p is the density of the material of the rotating disc.
The temperature satisfying Laplace eq. (6) with boundary condition:
O=0, at r=a,
O=0at r=>
where @, is constant, given by [17]:
k= and k, =-logb
log —
Substituting &, and k, form eq. (6), we get:
O, log r
6 =——2> (11)
log —
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Using egs. (9) and (11) in eq. (10), we get a non-linear differential equation in 3
as:

2,2 oy
Q2 -1 P(P +1)n-1 dP _npe?r?  nCeO,
ds 2u 2u

LBl —(P+1)" —np[l —C +2-C)P +1)" |} (12)

where @0 =0, /log(a/b) and rB'=pBP (P is function of B and fis function of 7).
From eq. (12), the turning points of f are P =—1 and Zeo.
The boundary conditions are:

u=0 atr=a and T,=0 at r=»> (13)

Solution through the principal stresses
For finding the plastic stress, the transition function is taken through the princi-

pal stress (see Seth [7, 8], Hulsurkar [9], and Gupta ef al. [10-14, 16]) at the transition
point P — teo. We take the transition function R as:

nCé®

R =2i(Tee -CEO)=3-2C)-p"R-C+(1-C)YP+1)"]- (14)
u

Taking the logarithmic differentiation of eq. (14) with respect to 7 and using eq.
(12), we get:

1= (P +1)" —n(1-C)P +

B/ 2:7 L np?r? nCe@o (3 -2C) |+ (2 - C)nPB"
d(logR) _ _ 2up" u(4-2C)p" (15)
dr r{3—2C—ﬁ”[2—C+(1—C)(P +1)n]—”§‘§@}
1

Taking the asymptotic value of eq. (15) at P — +° and integrating, we get:

1
R=K,r2-C (16)

where K is a constant of integration, which can be determine by boundary condition.
From egs. (14) and (16), we have:
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Substituting eq. (17) in eq. (10) and integrating, we get:

p
_ 1 GO, log— 2,2
=2,Lt(2 C) AIV 2-C 4 b _Cg@o _pw r +& (18)
n1-C) log a4 log a4 3
b b

where K5 is a constant of integration, which can be determine by boundary condition.
Substituting eq. (17) and (18) in second equation of egs. (8), we get:

22 - C)aE@, log %

_ 2,2 _
B = 1_2(1 C) | po?r +ocE@O(2 C)+ _ B (19)
EQ-C) 3 10gg logﬁ r
b b
where C¢ =aE(2 - C).
Substituting eq. (19) in eq. (2), we get:
r

P02 aB@,(2—C) 2Q2-C)aEO, logz B,

2(1-C) + + -—
u=r—-r|l-— 3 a a | (20)

E2-0) log; logz

where £=2u(3-2C)/(2—- C)is the Young’s modulus in term of compressibility factor.
Using boundary condition (13) in egs. (18) and (20), we get:
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Substituting eqs. (21) and (22) in egs. (17), (18), and (20), respectively, we get
the transitional stresses and displacement as:
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From egs. (23) and (24), we get:
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Fromeq. (26), it is seen that |T —y 99| is maximum at the internal surface (that is

at » = a), therefore yielding of the disc takes place at the internal surface of the disc and
eq. (26) can be written as:

1-C
203 — 43 C
I~ Tao _|po?(® ~a )[2)2 c .
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=c =c
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b

where Y is the yielding stress.

The angular speed €2, necessary for initial yielding is given by:

1
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The disc becomes fully plastic (C — 0) at the external surface and eq. (26) be-
comes:
20p3 — 43 _
s = Too =M+QE@O b-a _,all_y
r=b 6b blogd D
og —
b
where E=3u.

The angular Q, speed required for fully plastic state is given by:

a
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where

Q. Y
0f=—"[—
b \p
We introduce the following non-dimensional components:
T Ton - Ei ®?2b? ®2b?
R=LRy =% 6,=" gy="09 u:ﬁ,glza &0 ’Qizzp i and Q2 _pob”
b b Y Y b Y Y

Elastic-plastic transitional stresses, angular speed and displacement from eq.
(23)-(25), and (27) in non-dimensional form become:

Oyg=—o
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0 +
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1-C 1-C
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_ 1 3 3
~R-R 1—2Y1‘C s R0 (32)
2-C|,812-C)R-Ry) 22-C)6,( logR Ry
RlogR, 1-C logR, R

Stresses, displacement, and angular speed for fully plastic state (C — 0), are ob-
tained from eqs. (29), (30), (32), and (28) as:
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Particular case

When there is no thermal effect (@, = 0), the transitional stresses from eq. (29) to
(32) become:

Q2| 1-RH(1-C —C
e__( ) ) iy (37)
3R 2-C
0?2 1-c
o, =—|(1-RHR>C —R>+R} (38)
3R
_ Y1-C| 02?2
#=R-R [1-2———| "L (R3—R3 39
\/ E2- c{w( 0)} (39)
where 1
02 = 3(2_C)R02‘C (40)
1-R}

For fully plastic state stresses, displacement, and angular speed from eq. (33) to
(36) becomes:
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These equation are same as obtained by Gupta and Pankaj [15].

Results and discussion

For calculating the stresses, angular speed, and displacement based on the above
analysis, the following values have been taken: C = 0.00, 0.25, 0.5, and 0.75, E/Y=1/2
and2, ®,=0and 700 °F, @ =5.0 -10° deg F! (for methyl methacrylate) [18],0,=
=aFB®yY=0,0.0175,and 0.07 for £/Y=1/2 and 2, and 8,,= 0 and 700 °F, respectively.

Curves have been drawn in fig. 2 between angular speed 22 required for initial
yielding and various radii ratios R, = a/b for C=0, 0.25, 0.5, and 0.75 at ®, =0, 0.0175,
and 0.07. It has been observed that in the absence of thermal effect the rotating disc made
of incompressible material with inclusion require higher angular speed to yield at the in-
ternal surface as compare to disc made of compressible material and a much higher angu-
lar speed is required to yield with the increase in radii ratio. With the introduction of ther-
mal effects, lesser angular speed is required to yield at the internal surface. It can also be
seen from tab. 1 that for compressible material higher percentage increased in angular
speed is required to become fully plastic as compared to rotating disc made of incom-
pressible material.

In figs. 3 and 4, curves have been drawn for stresses and displacement with re-
spect to radii ratio R = r/b for elastic-plastic transition and fully plastic state, respectively.
It has been seen that temperature has a quite effect on radial and circumferential stresses
i. e. with the introduction of thermal effect it decrease the value of radial and
circumferential stress at the internal surface for transitional state, whereas from fig. 4, it
can been seen that thermal effect increases the values of radial and circumferential stress
at the internal surface for fully-plastic state.
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Figure 2. Angular speed required for initial yielding at the internal surface of the rotating
disc

Table 1. Angular speed required for initial yielding and fully plastic state

0 0 4.848732 6.857143 18.92071152
b 0.0175 0 4.719678 7.063705 22.33762967
9‘2 0.07 0 4.317334 7.682293 33.40392435
u 0 0.25 4.037701 6.857143 30.31804128
s 0.0175 0.25 3.926953 7.063705 34.11840831
0.07 0.25 3.581684 7.682293 46.46463551

0 0.5 3.239797 6.857143 45.4831515
0.0175 0.5 3.147226 7.063705 49.81396203
0.07 0.5 2.858767 7.682293 63.94078954
0 0.75 2.461496 6.857143 66.90601558
0.0175 0.75 2.387026 7.063705 72.02346519
0.07 0.75 2.154855 7.682293 88.82842534
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Stresses and displacement

Figure 3a. Stresses at the elastic plastic transition state
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Figure 3b. Stresses at the elastic plastic transition state
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Stresses and desplacement

Stresses and displacement
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Figure 3c. Stresses at the elastic plastic transition state
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Figure 4. Stresses at the fully plastic state
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Nomenclature
a, b — internal and external radii of the disc, [m]
C — compressibility factor, [-]

Ky, Ky, ki, ks — constants of integration, [—]

Tjj, e stress [kgm's %] and strain rate tensor
u, v, w — displacement components, [m]

Y yield stress, [kgm's™]

Greekr letters

©] — temperature, [°F]

o — radial stress component (7,,/Y), [-]

Op — circumferential stress comyonent (Teo/Y), Oy = 0 EOYY, [-]
P — density of material, [kgm ]

loh — po’b*/E (speed factor), R = r/b, Ry = a/b (radii ratio), []
10} — angular speed of rotation, [s']
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