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Fluid flow in curved chan nels with var i ous cross-sec tions, as a com mon
prob lem in the o ret i cal and ap plied fluid me chan ics, is a very com plex and
quite un dis cov ered phe nom e non. De fin ing the op ti mum shape of the fluid
flow bound aries, which would en sure min i mum un de sir able phe nom ena,
like “dead wa ter“ zones, un steady fluid flow, etc., is one of the cru cial hy -
drau lic en gi neer ing’s task. Method of ki netic bal ance is de scribed and used
for this pur pose, what is il lus trated with few ex am ples.
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Introduction

De ter mi na tion of the op ti mal hy drau lic bound ary which re sults in sta ble fluid
flow with out sep a ra tion and tran sient phe nom ena is of ten solved with the help of nu mer -
ous ex per i ments, some times fol lowed by un suc cess ful tri als. Here is pre sented the
method of ki netic bal ance, which is the ba sis of the com pu ta tional solv ing pro ce dure for
this prob lem.

The in ner fluid flow cur rent is at hy drau lic equi lib rium, con tain ing “sound
flow”, bound ary layer, and maybe “dead wa ter”, zones. The lat ter ones are zones of
slowly mov ing or fluid at rest, sep a rated from the “sound flow” by the dis con ti nu ity sur -
face. They oc cur as the re sult of fluid sep a ra tion, which hap pens, ei ther due to the bound -
ary layer thick en ing or sig nif i cant fluid in er tia. Bound ary layer suc tion is the so lu tion for
the first rea son, used in for ex am ple aero dy nam ics, but the lat ter one can not be avoided in 
such a man ner. Strscheletzky [1] named it “in er tial sep a ra tion”.

In the ro tat ing fluid, that will oc cur in the prob lems dis cussed in this pa per, close 
to the ro ta tion axis, is formed swirl core, which can be treated as “dead wa ter”. It is sur -
rounded by the “sound flow” re gion, where the flow can be as sumed ho mo ge neous, fluid
ideal, and in com press ible, which is neigh bored by the bound ary layer.

Fluid bound aries shap ing prob lem, which will en sure sta ble fluid flow with the
lack or min i mum pres ence of the un de sir able phe nom ena, was stud ied by, fore men -
tioned, Strscheletzky [1, 2], who has de vel oped the method of ki netic bal ance based on
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the Eu ler flow equa tion ideal, in com press ible fluid. This is the the o ret i cal ap proach to the 
prob lem of the op ti mal flow field bound ary shapes.

Pre sented method is con firmed in many prob lems, of which some are in tro duced 
later on.

Theoretical background

Navier-Stokes equa tion for in com press ible fluid states [3]:
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where 
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c and p are local velocity and pressure, respectively, 

r
F – volume forces, r – density, 

and n – kinematic viscosity.
In tro duc ing as sump tion for the vol ume forces to be con ser va tive, i. e.r

F grad= - U , mo men tum eq. (1) for el e men tary fluid mass (dmi = rdVi), is trans formed to:
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The whole flow do main con tains n el e men tary vol umes. The “sound flow” and
“dead wa ter” zones are sep a rated with the sur faces of zero, sec ond or higher or der of dis -
con ti nu ity. Vir tual work of forces act ing on the fluid in the vol ume Vi at the mo ment t, for
the vir tual dis place ment d
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In tro duc ing as sump tion for ideal (non-vis cous), in com press ible fluid, for the
whole flow do main V, we get:
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Since the integrals are ad di tive and  V Vii
n= =å 1 , it fol lows from the last equa -

tion:
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The last eq. (5), states the Lagrange’s prin ci ple of vir tual work: Flow equi lib -
rium in the vol ume V at the mo ment t, is achieved when the sum of vir tual works of the
forces, act ing on the fluid, equals zero.
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In tro duc ing the ki netic dEk = c2r/2 dVi and po ten tial dEp = Udm + pdV en ergy,
it fol lows from eq. (5), that:

d ( )d d dk pE E t
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(6)

Equa tion (6) rep re sents bal ance con di tion for the fluid in mo tion, which states
that non-vis cous and in com press ible fluid is in equi lib rium if the dif fer ence be tween po -
ten tial and ki netic en ergy is at min i mum. Know ing that the to tal en ergy of vir tual mov ing
does not change, equi lib rium con di tion (6) is ex pressed as the vari a tion of the sum of
integrals of ac tion Ii, formed for the char ac ter is tic flow do main zones Vi:
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where 
r
c is the local flow velocity, Vi – i-th fluid flow region, dVi – elementary volume

bounded by the inflow Aei and outflow Aoi control surfaces (fig. 1), as well as by the given 
boundaries; s1 and s2 – representative positions of the fluid particle at the moments t1 and
t2, respectively, with ds cd

r r
= t.

Equa tion (7), is more con ve nient state ment of the equi lib rium con di tion for the
fluid in mo tion, for the pur pose of de fin ing op ti mum fluid flow bound aries, than eq. (6).
This re sults in fact that op ti mally de fined ge om e try of fluid flow bound ary dif fers from
other so lu tions, by hav ing the min i mum value of the ac tion in te gral I.

Usu ally main the in ner flow is con sisted of one “sound flow” and one or many
closed sec ond ary flow re gions, sep a rated from the main flow by the free bound aries,
which are vorticity dissipative lay ers in the real fluid, or dis con ti nu ity sur faces, of dif fer -
ent or der, for the ideal fluid flow, that is model dis cussed here. Variational con di tions can 
be ap plied to the “sound flow” re gion, but ac tion in te gral for the “dead wa ter”, where
fluid is at rest or moves very slowly, equals zero. It fol lows from eq. (7) that:
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This equa tion has an a lyt i cal so lu tion only in spe cial cases. For this rea son nu -
mer i cal, or pre vi ously grapho-an a lyt i cal, method is used. It is well known that el lip tic
par tial dif fer en tial equa tions de scribe equi lib rium phe nom ena, the one is needed here.
Stream lines and the lines of the same po ten tial are mu tu ally nor mal and they form a
curvilinear grid. Con sid er ing this, the whole com pu ta tional, fluid flow do main, be tween
two con trol sur faces, should be di vided into fi nitely small vol umes: DV q p( , ) . Equa tion
(8) is then ap plied to these fi nite el e ments of the q-th stream tube, where qÎ[1, m]. Each
of DV q p( , )  is di vided into p (pÎ[1, k]) el e men tary vol umes. The ac tion in te gral is ap prox -
i mated as:
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where 
r
c( , )q p  is a local flow velocity corresponding to the mean streamline of the q-th

stream tube divided into k parts, Ds q p( , ) is the distance between the two respective
positions s(q, p) and s(q, p + 1), along the mean streamline of the q-th stream tube (fig. 1). 

In prac tice, de fin ing flow field bound aries re duces to the vari a tion of one bound -
ary, while oth ers save its po si tion, as well as the con trol sur face. The ac tion in te gral is
com puted for each case, and the one with min i mum in te gral is adopted as the fi nal so lu -
tion.

Ap pli ca tion of the ki netic bal ance method is il lus trated in the next flow field
bound aries form ing ex am ples.

Application of the kinetic balance method

Forming inner curved contour of the diffuser with parallel lateral walls [1]

Dif fuser model is shown in fig. 2a. Vari a tion of the in ner bound ary form is de -
fined by the ra tio h/b1 val ues de fined with arith me tic pro gres sion in in ter val [0.7, 1.1],
with the step 0.1, as it is shown in fig. 2a. The other fluid flow bound aries are fixed. The
ac tion in te gral is cal cu lated, us ing the ex pres sion (9), for each ge om e try.

Val ues of dimensionless ac tion in te gral I/I0 for va ri ety of ge om e try is pre sented
in fig. 2b. Func tion I/I0 has min i mum for the value h/b1 = 0.815, so this con tour was found 
to be the op ti mal. These the o ret i cal re sults were con firmed by the con ducted ex per i -
ments, pre sented in [1].
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Figure 1. Stream and potential line
grid for action integral calculation



Defining the aeration duct of the bottom outlets
of the Haditha dam in Iraq [4]

The geo met ri cal form of the aer a tion duct is shown in fig. 3a. The only vari able
bound ary is the in ner one, which forms and po si tions are de fined by the value r/bu = 1.57,
1.37, and 1.14. Com puted val ues of dimensionless ac tion in te gral I/I0 are shown in fig.
3b. Func tion I/I0 has min i mum value for the ra tio r/bu = 1.37, which is de noted as the case
II in fig. 3b.

Determination of the intake structure lower contour of the
additional hydro-turbine plant on the spillway of the  HPP “Djerdap II” [4]

The ki netic bal ance method, pre sented in this pa per, has been used for de fin ing
op ti mal shape of the lower con tour of the in take struc ture, with ge om e try de fined in fig.
4a. Dis cussed ge om e try vari a tions are de noted by num bers 4-10. Not only ge om e try
changes, but var i ous head wa ter lev els: Ñ63.0, Ñ65.0, and Ñ69.5 have been taken into
con sid er ation. The com pu ta tion re sults are shown in fig. 4b. The min i mum val ues of
dimensionless ac tion in te gral I/I0, for var i ous head wa ter lev els are, as it is shown in fig.
4b, in in ter val (6, 8). These the o ret i cally gained re sults, have been con firmed by ex per i -
ments.
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Figure 2. Diffuser with parallel lateral walls
(a) geometry, (b) action integral values
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Figure 3. Aeration duct of the bottom outlets
(a) geometry definition, (b) action integral values

Figure 4. Intake structure
contour
(a) geometry,
(b) action integral



Flow boundaries shaping under the inlet bell mouth of the
axial pump in pumping station “Gradištanski rit” [4]

Af ter in stall ing larger ca pac ity ax ial pumps in the pump ing sta tion
“Gradištanski rit”, for the ex ist ing suc tion level in the sump, some un de sired phe nom ena
oc curred. In or der to pre vent ro ta tional flow, es tab lish uni form ve loc ity field at suc tion
pipe mouth and pre vent air en train ing vor ti ces, sump ge om e try has been an a lyzed. It was
nec es sary, be sides some other ma nip u la tions, to form the fluid re gion be low the larger
bell mouth di am e ter. Shape of axis-sym met ri cal fluid flow do main be tween the suc tion
bell and the guide cone is shown in the fig. 5a.
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Figure 5. The flow passage
 (a) geometry, (b) action integral



Like in all the pre vi ous ex am ples one bound ary is change able, the other re main
un changed. In this case in ner con cave bound ary of suc tion cone was var ied, while the
shape of the bell was al ready de fined and kept con stant.

Dimensionless ac tion integrals I/I0 have been com puted for the three shapes of
suc tion bell con tour, de fined with the ra tio: R/hu = 2.42, 1.91, and 1.64, which is de noted
in the fig. 5 as A, B, and C, re spec tively. Com pu ta tion re sults are shown in fig. 5b. It was
found, and in this di a gram ob vi ous, that the func tion I/I0 has its min i mum for the ra tio
R/hu = 1.91, cor re spond ing to the curve B.

The suc tion cone was built in the shape of the curve B. No fore men tioned prob -
lems ap peared, so once again, suc cess ful use of the ki netic bal ance method was con -
firmed in re al ity.

Defining the optimal shape of the Banki turbine,
cross-flow turbine, semi-spiral case [5]

Shap ing op ti mal Banki tur bine semi-spi ral case has been done by us ing the
method of ki netic equi lib rium. Im pel ler, semi-spi ral case (in take cham ber) and wicket
gate are main parts of the Banki tur bine fluid flow ge om e try. Semi-spi ral case di rects wa -
ter to the im pel ler un der de fined an gle, with as much as pos si ble lower en ergy losses.
Tur bine in flow is reg u lated by the wicket gate blade. This is work ing prin ci ple of this,
like other ac tion tur bines, where wa ter ki netic en ergy is used.

The most con ve nient con struc tion of the wicket gate, from hy drau lic point of
view, is the hy drau li cally shaped blade, built in as con sole, rounded at the end.

Fluid flow bound aries, i. e. wa ter pas sage ge om e try, of the Banki tur bine is
given in fig. 6, pre ceded by the tab. 1, where ra dii for three var i ous con struc tions, de noted 
with i, are given. Value of the clasp ing an gle of the semi-spi ral case is here 90º, though it
may have var i ous val ues.

In te gral of ac tion has been cal cu lated for each pos si ble ge om e try of the in take
cham ber.

Table 1. Geometry parameters (curvature radii) for turbine semi-spiral case definition

i
R1

[mm]
R2

[mm]
R3

[mm]
R4

[mm]
R5

[mm]
R6

[mm]
R7

[mm]

I 253,7 235,3 227,0 216,1 202,5 185,7 167,6

II 253,7 235,3 218,3 202,5 187,9 174,3 161,7

III 253,7 227,3 205,9 190,5 175,5 164,1 157,7
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Rel a tive val ues of ac tion in te gral in the  func tion of  con tour ra dius  r* at an gle
ak  = 30° are pre sented in fig. 7. Dimensionless ac tion in te gral I/I0 has a min i mum value
equals 1, for the con struc tion II. It co mes out, ac cord ing to the con di tion for fluid flow
sta bil ity, that con struc tion II has op ti mal shape of the in take cham ber.

Conclusions

Pre sented re sults in tro duce method of ki netic bal ance as a re li able, help ful tool
for de fin ing op ti mum shape of the fluid flow bound aries. This an a lytic ap proach, with the 
help of nu mer i cal meth ods, leads to the most ap pro pri ate ge om e try, what is con firmed
with nu mer ous ex per i ments con ducted with fluid flow bound aries con structed ac cord ing
to the nu mer i cally ob tained shapes. Con se quently, num ber of var i ous con struc tions
which should be tested ex per i men tally de creases in a great per cent age by the ap pli ca tion
of this method. The in flu ence of vis cos ity, which is ne glected in this study, should be
checked ex per i men tally for the fi nal def i ni tion of the fluid flow bound aries. The method
is sim ple, and since equi lib rium is de fined with el lip tic equa tions, po ten tial flow so lu tion
is prob a bly the eas i est to use. This method could be used in a va ri ety of prob lems, not just
like ex am ples de scribed in this pa per, but also, for ex am ple flow pas sage form ing and de -
ter mi na tion of vor tex core ra dius [6].
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Figure 6. Various constructions of the
Banki turbine intake chamber

Figure 7. Action integral values for various
constructions of the semi-spiral case
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Nomenclature

f –  equipotential line
y –  stream line
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