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A method for model parameter identification on the bases of minimization of
the least square function has been proposed. An iterative regularization
procedure and a numerical algorithm have been developed for incorrect
(ill-posed) or essentially incorrect inverse problem solution. The method
has been tested with one and two-parameter models, when the relations be-
tween objectives function and parameters are linear and non-linear. The
“experimental” data for parameters identification are obtained from the
model and a generator for random numbers. The effects of the initial ap-
proximations of the parameter values and the regularization parameter val-
ues have been investigated. A statistical approach has been proposed for the
analysis of the model adequacy.

1t is demonstrated that in the cases of essential incorrectness, the least
square function do not reach minima. A criterion for the incorrectness of the
inverse problem was proposed.

Key words: model parameter identification, incorrect inverse problems,
iterative method, regularization, model adequacy

Introduction

The main problem of the modelling of the hydrodynamic, heat and mass transfer
processes is the build-up mathematical structure, describing the processes based on the
hypothesis (knowledge) concerning to their physical mechanisms. Moreover, the proce-
dure needs of the parameters identification of the mathematical description, based on ex-
perimental data. The inverse identification problem is often an incorrect (ill-posed), i. e.
the solution is sensible with respect to the errors of the experimental data [1-5]. The main
cause is small parameters — pre-factors of the high-ranking (second) derivatives — in the
parabolic partial differential equations in the hydrodynamic, heat and mass transfer mod-
els (viscosity, diffusivity, conductivity).

The solution of the parameters identification problem can be obtained by the
minimization of the functional of variances (least square function), i. e. from the condi-
tion for a minimal difference between calculated and experimental data [5-10].

There are different methods (selection, quasi-solution, substitution of equation)
permitting to obtain solutions of the incorrect inverse problems in the cases of a presence
of the additional information about the functional minima [4, 5, 10].
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In many cases the inverse problems are essential incorrect and a regularization
operator permits to obtain the solution [5, 6, 10]. The problem regularization use
variational or iterative approaches. Further the gradient methods are employed for a min-
ima search [6, 7, 11-14]. The iterative procedure stops when the iterative solution moves
away from the exact solution and the number of the last iteration is accepted as a regular-
ization parameter of the inverse problem solution.

In many cases, this approach generates a large deviation of the iterative solution
from the exact solution. In the present paper, the new proposed iterative algorithm per-
mits minimization of the difference between iterative and exact solutions.

Problem formulation

Let us consider a numerical model:
y=f(X,b) (1)

where f is an objective function, expressed analytically, numerically or through an
operator (algorithm); X = (x; . Xx,,) is a vector of independent variables, b= (b; b)) —
vector of parameters.

The parameters of the model (1) should be determined by means of N experi-
mental values of the objective function )= (J,,..., §5 ). This requires the introduction of
a least square function:

Ob)= S0, —5,)° @

where y, =f(X,,b) are the calculated values of the objective function of the model (1),
while X, = (x1,,, ..., X,;,) are the values of the independent variables from the different
experimental conditions (regimes), n =1, ..., N.

The parameters of the model (1) can be determined upon the conditions imposed
by the minimum of the function O = (b, ..., b,) with respect to the parameters b= (b, ..., b)).

The determination of b faces many troubles due to the incorrectness of the prob-
lem. They are a result of the sensibility of the solution with respect to the experimental er-
rors associated with the determination of . They can be avoided by applications of regu-
larization methods that make the problem conditionally correct.

Incorrectness of the inverse problem

Let us consider the one-parameter model:

y =1-exp(-by) 3)

where y is an objective function, x is an independent variable and b is an parameter.
In the fig. 1 is shown a dependence of the objective function from the model pa-
rameter at a constant value of the independent variable x = x,. The relation between the
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objective function and the parameter in the fig. 1 is typical in the cases of small parameter
(viscosity, diffusivity, conductivity) as a pre-factor of the second derivative in many
models of hydrodynamic, heat and mass transfer processes.

The fig. 1 permits to obtain ob-

jective function y, for a given pa- 1
rameter value by, i. e. this is the di- Avogt
rect problem solution. The inverse . 08!
problem is an obtaining of the pa- -
rameter value b, if the experimental " |-
value of the objective function yj is &8
known. 0.5

Let Ay is an experimental error 0.4
of the objective function. In the fig. Moal
1 is seen, that the error of the param- 0.2

eter identification is different for
small and large objective function ; .
values. For the small objective func- o 0.1 , 02 gfg 04 05 ofeAbofT 08 09 |
tion values the error Ab; is small and ! ‘ : :
the inverse identification problem is
correct. If the objective function val-
ues are large, the error Ab, is large
too and the inverse problem is incor-
rect (ill-posed). In the case of very large objective function values, Abj; is very large and
the inverse identification problem is essentially incorrect.

The results in the fig. 1 show that inverse method incorrectness is not result
of the error size and the cause is the parameter sensitivity with respect to the experi-
mental errors of the objective function.

Figure 1. Objective function y for different values
of the model parameter b at x = x, = const.

Incorrectness of the least square function method
Let us consider the two-parameter model:
y =1=b; exp(~byx) 4
where b, =1 and b, =5 are exact parameter values.

The parameter identification problem will be solved by the help of the “experi-
mental” data, obtained by a generator of random numbers:

P =(095+014,)y,, PP =09+024,)y, (5)

Here, 4, are random numbers at the interval [0, 1], and y, is obtained from the
model (5) for x = 0.01n (n = 1,...,100). Obviously, the maximum relative errors of the
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“experimental” data (Ap) are £5% and £10%. The values of y,, f/,(,l) and )7,(,2) are shown in

fig. 2.

Figure 2. Mathematical model
and “experimental” data

[*] - 3?5,1) values of y with a
maximal “experimental” error of
+5%;

[®] — }?,(,2) values of y with a
maximal “experimental” error of
+10%;

[—] -y =1-exp(=5x)

In the fig. 2 is seen that inverse identification problem is correct when 0 <x < 0.3, in-
correct if 0.31 <x < 0.65, and essentially incorrect when 0.66 < x < 1.

In the figs. 3-5, are seen the horizontals of the least square function (2) in the cases of
5% relative experimental data error and different interval of x, when inverse problem is

: s
; Al e

0 02 04 06 08

Figure 3. The horizontals of the least square

function Q
(n=1-30; A [%] =£5); [¢] —b =[], 5];
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correct (fig. 3), incorrect (fig. 4), and es-
sentially incorrect (fig. 5). These results
show that the least square method is cor-
rect when the differences between exact
parameter values in the model and the co-
ordinates of the least square function
minimum are very small (fig. 3). These
differences are too large, when the in-
verse problem is incorrect (fig. 4). In the
case, when inverse problem is essentially
incorrect the least square function has not
a minimum (fig. 5).

The results obtained show (figs. 3-5),
that in the cases of incorrect inverse
problems, the least square function mini-
mization is not lead to solution of the in-
verse problem and for the problem solu-
tion must be use additional conditions.
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Figure 4. The horizontals of the least square  Figure 5. The horizontals of the least square
function Q function Q
(n=31-65; Ay[%] =%5),; [¢] —b =[], 5], (n=66-100; Ay [%] ==£5); [¢] —b =[], 5]

Regularization of the iterative method
for parameter identification

Various iterative methods for a minimum search (the gradient ones too) are sta-
ble with respect to the experimental errors of the objective functions. However, after cer-
tain number of iteration an increasing of the difference between iterative and exact values
of the parameters start. That is why in each step must be checked the increasing of this
difference.

The present paper proposes a method with a preliminary defined accuracy of the
parameters identification. The minimum of Q(b) is determined by a gradient method,
controlling the difference between iterative and exact parameter values in each iteration
step.

Let the iteration procedure starts with an initial approximation b(® =
= (bl(o) yeees b}o) ). The values of b, = (b, ..., b ,1)» Where i is iteration number, are result of
the conditions imposed by the movement towards the anti-gradient of the function Q(b):

b = bjiy= By Jj=1,...J (6)

ob; (1)
2

where

Rj(l'*l) = :1,...,.] (7)
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Here f3, is the iteration step and 3, = 1072 (arbitrary small step value).
Each iteration step is successful if two conditions are satisfied:

| ]
Qi -0 = %lﬁ(i—l)jlzf(in’B(i—l))_2J’>n _ﬁ(i—l) $ (R . ﬁj |
" u (i—l)J

AL o,
SR, 2] sy (8)
=10 ij )
. (i-1)
by =0;)* = (b =b))* =B 1y[2(bji1y = b;) = By R jiy R ji1y) 20
=1

The first condition in (8) indicates that iterative solution (b, ) approaches the so-
lution at the minimum (b* ), while the second condition in (8) concerns the approach of
the iterative solution (b, ) towards the exact solution (b). Obviously, it is due to the effect
of the problem incorrectness b # b* (see figs. 3-5).

The results obtained permit to create an algorithm for solution of the inverse
identification problems [18, 19].

Correct problem solution

The literature sources [5, 6, 10, 11], teach that every method for solving of incor-
rect problems must solving a correct ones. Therefore, the first solution of the inverse
problem corresponds to the interval 0 < x < 0.3.

The proposed algorithm was used for the solution of the identification problem
and results are shown on the tab. 1.

Table 1. One and two-parameter model solutions

£

Ap [%] b i by b i
+5 49678 | 337 10025 | 5.0674 | 128
+10 | 49351 339 0.99401 | 49218 | 172

Incorrect problem solution

The parameters identification problem will be solved by minimization of the
least square function (2), where x, = 0.01ln, n =31, ..., 65, i. €. 0.31 <x < 0.65.

The incorrect problem solution for the one-parameter model (b = 6, y = 0.5)
and two-parameter model (b1(0)= 1.1, b2(0)= 6, y=0.05) are shown on the tab. 2.
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Table 2. Incorrect problem solution

*

Ap[%] | b i by b5 i
+5 | 50614 | 1213 | 11797 | 54666 | 642
+10 | 51232 | 1217 | 13778 | 59106 | 416

The results from tab. 2 show that differences between the exact and the obtained
values of the parameters are significant. The correctness of the parameter identification
will be tested through the model adequacy as a criterion [15-17].

Statistical analysis of model adequacy

The model is adequate if the variance of the experimental data error (S,) is
equal to the variance of the model error (S). The test needs to the experimental values of
the objective function p, ,(k=1, ..., K) upon identical technological conditions (regime) x =

=x0) = (xl(o) , ...,x}é)) ), where K =5-10. The experimental data variance requires estima-
tion of the mathematical expectation of y(7, ) [10, 15]:
1 K
i, =— ) )
r T E™

and as a result

s2=——$(5 - m,)? (10)

5=t 80, -2 =2 (n

where N is experimental data number and J — the parameters number.
The model adequacy is defined by the variance ratio:

2

P52

S

where S2 > S 2, if S contains the error effect of the both model and experimental data. The

value of F is compared to the tabulated values () of the Fisher’s distribution (criteria)
[15]. The condition of the model adequacy is:

(12)

F<F;(avV,) (13)
where v=N-J,v,=K-1,anda =0.01-0.1.

The statistical analysis of the one and two parameters model adequacy was
tested for 0 <x <0.30 and the results are presented on tab. 3. For the test performed: N =
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=30,J =1(2), K =10, x® = 0.2, and a = 0.05. The results collected confirm the ade-
quacy of the model.

Table 3. Statistical analysis of the model adequacy (0 <x <0.3)

[ Tweal o [ &8 T v [ s102 [si02] ¢ [ r]

1 +5 — 4.9678 0.9 1.7933 1.7071 0.9061 2.24
1 +10 - 4.9351 0.9 3.5867 3.4139 0.9059 2.24
2 +5 1.0025 | 5.0674 0.9 1.7933 1.8354 1.0475 2.25
2 +10 0.9940 | 4.9218 0.9 3.5867 3.4434 0.9217 2.25

The statistical analysis of the cases corresponding to incorrect inverse problem
(0.31 <x<0.65) was performed for N =35,J=1(2), K = 10,x? = 0.5, and & = 0.05 (see
tab. 4). The models are adequate despite the large differences between the calculated and
the exact values of the model parameters (see tab. 2).

Table 4. Statistical analysis of the model adequacy (0.31 <x < 0.65)

[ Tweal s [ & [ v [ st [sw2[ r [ 5|

+5 5.0614 0.5 2.6042 2.3588 0.8205 2.19
+10 5.1232 0.5 5.2083 4.7328 0.8257 2.19
+5 1.1797 | 5.4666 0.05 2.6042 2.3656 0.8252 2.20
+10 1.3778 5.9106 0.05 05.2083 4.7349 0.8265 2.20

NN = =

Essentially incorrect problem

The parameters identification problem when inverse problem is essentially in-
correct will be solved by minimization of the least square function (2), where n = 66, ...,
100.

The results in the tab. 5 are solutions of the identification problems for one- and
two-parameter models.

Table 5. One and two-parameters model solutions (0.66 <x < 1)

(weal o [« [ & [ 58 [ 0]

5 5.1828 2066 2.1720 | 6.1731 54
+10 5.3816 2156 4.9003 | 7.4004 128
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The results in the tab. 5 show that the differences between obtained and exact
parameters values are very large, but the differences between obtained and exact models
exhibit just the opposite behavior.

Statistical analysis of the model adequacy in the cases of essential incorrectness of
the inverse problem (0.66 < x < 1) was done for N=135,J=1(2), K=10,x»=0.8, anda =
0.05. The results are collected in the tab. 6. The models employed in this paper are ade-
quate independently despite the large differences between the calculated and the exact
values of the model parameters (see tab. 5).

Table 6. Statistical analysis of the model adequacy (0.66 <x <1)

AP [%] by b5 5102 | S5-102 F F,
+5 5.1828 27850 | 25988 | 0.8707 | 2.19
+10 53816 55701 | 52482 | 08723 | 2.19

2.7851 2.6221 0.8855 2.20
5.5701 5.2482 0.8877 2.20

+5 2.1720 6.1731
+10 4.9003 7.4004

NN ==
DN [ [ [ R

General case

It was shown, that if the “experimental” data were obtained upon conditions (re-
gimes), corresponding to the interval 0 < x < 1, the parameter identification problem is
correct, incorrect, and essential incorrect.

In practice, very often is possible to have experimental data in very large regime
interval (for example 0 < x < 1). However, it is unknown which from the experimental
data lead to correct or incorrect problem. That is why the parameter identification prob-
lem will be solved by minimization of the least square function, obtained in the very large

experimental data interval:
100 .
Q(b) = zl(yn = 9)? (14)
where y, = f(x,,, b), x, = 0.01n, n =1, ..., 100, b = (b, b>).
In the tab. 7 the results of the parameter identification for one- and two-parame-
ter model are shown. This results are obtained for initial approximation, b =6, (y = 5)
and b = 1.1, 6" = 6 (y=2).

Table 7. One and two-parameters model solutions (0 <x <1)

£

Ap[%] b* i b, b, i
+5 5.0117 50 1.0106 | 5.1717 65
+10 5.0231 50 1.0196 | 5.1721 66
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Statistical analysis of the model adequacy in the cases of 0 < x <1was made for
N=100and the results are shown in the tab. 8. They show that all of models are adequate
due to F<F}

Table 8. Statistical analysis of the model adeq(uacy (0<x<1), K=10, for different
regimes (x{¥ = 0.2, 5., F'; x{¥ = 0.5, 57, F"; x{¥ = 0.8, 57 F")

Lo T8 [sp0e]spaor [sproz [ sz [ m [ [ [ p ]

- 5.011 1.79 2.60 2.78 2.33 0.80 | 0.70 | 1.69 | 1.99
— 5.023 1.79 1.79 1.79 2.33 1.69 | 1.69 | 1.69 | 1.99
1.010 | 5.171 1.79 1.79 1.79 2.40 1.80 | 1.80 | 1.80 | 1.99
1.019 | 5.172 1.79 1.79 1.79 2.40 1.79 | 1.79 | 1.79 | 1.99

Incorrect inverse problem “diagnostics”

In all these cases the difference between correct and incorrect inverse identifica-
tion problem is based on the distance between exact solution point and least square func-
tion minimum point. In practice however the exact parameter values are unknown and a
criterion for the inverse problem “diagnostics” will be very useful.

On the tabs. 9 and 10 are shown the solutions of correct and incorrect inverse
problems on the bases of different experimental data sets. It is seen that a criterion of the
inverse problem incorrectness is the large difference between solutions which are ob-
tained on the bases of different experimental data sets.

The results in the tabs. 9 and 10 show that the solution of the inverse problem b*
permit to calculate the objective function y, =f(%,,b*)for different “experimental”
conditions (n =1, ..., N). If put this values (y,) in egs. (5), different sets of random num-

Table 9. Solutions of correct and incorrect problems using different
“experimental” data sets

1 1.0025 5.0674 | 0.9 128

0<x<03 2 1.0115 5.1706 | 0.9 120
3 1.0068 5.1881 | 0.9 179

1 1.1564 5.2675 | 0.05 798

031 <x<0.65 2 0.5789 3.7056 | 0.05 1803
3 1.1723 5.2624 | 0.05 776
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bers A, permit to obtained different sets of “experimental” data $,(n =1, ..., N). The
comparison of the inverse problem solutions, using different “experimental” data sets,
will show the inverse problem correctness (incorrectness).

Table 10. Solutions of essentially incorrect problem and general
case, using different “experimental” data sets

Y s B =6
Different “experimental” data b’ b, y i

1 4.5933 6.7246 5 680

0.66 <x<1 2 0.1161 2.3417 5 390
3 2.7943 5.9219 5 133

1 1.0106 | 5.1716 | 2 66

0<x<l 2 1.0100 5.1963 2 70

3 1.0134 5.1913 2 76

Conclusions

The proposed iterative method and algorithm for model parameters identifica-
tion in the cases when inverse problem is incorrect shows that a large difference between
parameter values, obtained on the bases of different experimental data sets, is a criterion
for inverse problem incorrectness.

The solution of the model parameters identification problem by the help of the
least square function minimization manifests a large difference between the exact and
calculated (as a function minimum) parameter values i. e. the minimization of the least
square function is not a solution of the parameter identification problem. This difference
is not result of the experimental data size and can be explained with the inverse problem
incorrectness, i. e. the parameter value sensibility with respect to the experimental data
errors.

An additional condition is introduced for the inverse problem regularization,
which permits to use least square function minimization for a solution of the model pa-
rameter identification problem.

A statistical analysis of the model adequacy is a criterion for the applicability of
the presented iterative method for the model parameters identification.
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