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The effect of uniform magnetic field on the Dufour-driven thermosolutal
convection of an electrically conducting fluid completely confined in an ar-
bitrary region bounded by rigid walls is considered. Some general qualita-
tive results concerning the character of marginal state, stability of oscilla-
tory motions and limitations on the oscillatory motions of growing
amplitude, are derived. The results for the horizontal layer geometry in the
present case follow as a consequence.
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Introduction

The stability properties of binary fluids are quite different from pure fluids be-
cause of Soret and Dufour [1, 2] effects. An externally imposed temperature gradient
produces a chemical potential gradient and the phenomenon, known as the Soret effect,
arises when the mass flux contains a term that depends upon the temperature gradient.
The analogous effect that arises from a concentration gradient dependent term in the heat
flux is called the Dufour effect. Although it is clear that the thermosolutal and
Soret-Dufour problems are quite closely related, their relationship has never been care-
fully elucidated. They are in fact, formally identical and this is done by means of a linear
transformation that takes the equations and boundary conditions for the latter problem
into those for the former. Recently, Hari Mohan [3] mollified the nastily behaving gov-
erning equations of Dufour-driven thermosolutal convection of the Veronis [4] type by
the construction of an appropriate linear transformation and derived the desired results
concerning the linear growth rate and the behavior of oscillatory motion on the lines sug-
gested by Banerjee et. al [5].

Almost all the papers that are written on the subject are confined to horizontal
layer geometry on account of complexity of the problem for arbitrary geometry. How-
ever, there do exist a class of results in the domain of hydrodynamic and hydromagnetic
stability theory that possess the sparks of their generalization to containers of arbitrary
shape [6].
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The present paper investigates the instability of Dufour-driven thermosolutal
convection of an electrically conducting fluid completely confined in an arbitrary region
bounded by rigid walls in the presence of a uniform magnetic field applied in an arbitrary
direction and derives some general qualitative results concerning the character of mar-
ginal state, stability of oscillatory motions and limitations on the oscillatory motions of
growing amplitude. The results for the horizontal layer geometry in the present case
follow as a consequence.

Mathematical formulation and analysis

The relevant governing non-dimensional linearized perturbation equations in
the present case with time dependence of the form exp(p?) (p = p, + ip;) are given by:

LG ——V(p)-curl curl g +R68 —Rg¢B +Q(curl h)x (1)

(e}
(V2= p)0+RyV *p=—G )
(V- p)p=—4-B (3)
curleurl 7 +M =curl(g x @) 4)

(e}
and -

V.-g=0=V-h (5)

In the above equations ¢ (x, y, z), p(x, ,2),0(x, ¥, 2), ¢(x, , 2), and A (x, y,z) re-
spectively denote the perturbed velocity, pressure, temperature, concentration, and mag-
netic field and are complex valued functions defined on V, Rt =gafs d* / kv is the ther-
mal Reyleigh number, Rq=ga'f’d */Kk'v is the concentration Rayleigh number,
Q=ueH g d*/ 4np,vnis the Chandrasekhar number, t=x"/ k is the Lewis number, V>0
is referred here as Dufour number, and £ is a unit vertical vector. Further, with d as the
characteristic length, the equations have been cast into dimensionless forms by using the
scale factorsk/d, d Y , Bd, pvx/d 2 ,B'd, and kH , / nfor velocity, time, temperature,
pressure, concentration and magnetic field respectively.

Associated with the system of egs. (1)-(5) is a set of homogeneous and time in-
dependent boundary conditions. We shall limit our consideration to the region y com-
pletely confined by rigid walls, which may be thermal, and concentration-wise conduct-
ing or insulating and to see the case when the electrical conductivity of the wall is large in
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comparison to the field (see [6]). Thus we seek solutions of egs. (1)-(5) in the simply con-
nected subset V of R; subject to the following boundary conditions:

either §=0=0=¢=nxcurlh on S (6)
or §=0=V0in=Vér=rnxcurlh on S (7)

where 7 is a unit vector in the direction of the normal to boundary surface S.

Equations (1)-(5) together with boundary conditions (6)-(7) constitute an
eigenvalue problem for p for given values of other parameters. The system is stable, neu-
tral or unstable according to the sign of p, (negative, zero or positive). Further:

(a) pi #= 0 and p, > 0 describe oscillatory motion of neutral or growing amplitude,

(b)R1r<0,Rs <0,y >0, and Q =0 describe Stern [7] thermohaline configuration in the
present generalized set up which for convenience is epitomized in abbreviated form
as GSTHC, and

©Fa :|RS | / |RT | takes care of initial density gradient of the configuration.

Finally if p, = 0 = p; = 0, then the principle of exchange of stabilities (PES) is
valid, otherwise, we have overstability.

We now, prove the following lemmas and theorems.

Lemma 1: (Poincare : Inequality) — If f(x, y, z) is any smooth function which vanishes on
S, and / is the smallest distance between two parallel planes which just contains V, then
there exists a constant A(> 2) such that:

£|VF|2dvz %ﬂfﬁdv (8)

Proof: See Joseph [8].

Lemma 2:1f (p, q, h,6, ¢) is a non-trivial solution of eq. (1)-(5) together with either of the
boundary conditions, then the following integral relations hold:

[G*-curleur] GdV = ‘Ucurl g dv 9)
)
[g* -curlcurl(qx £)dV = [eurl(§ x #)curlg* dV (10)
Vv A\
[ * curleurl(@B)dV =0= [§* -curlcurl(¢f3) dV (11)
Vv \%
[* {(curl h) 7]dV =~ [A -curlcurl(q * 7)dV (12)
Vv A\
Tg*1{ Ecurlcurlcurlﬁ]dV:—jcurlcurll; -curl(g * i)dV (13)
A \%

- - ~12 - ~
jh*~curlcurlcur1th:—\churlh‘ dV = [k *-curlcurl & *dV (14)
A\ A\

[ *-V(P)V=0 (15)
\%
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[G* AV div 0p)1dV =0= g*-[w(ﬁ/?)]dv (16)
\j/c}*-[V(@-curlcurlﬁ)]deO (17)
\j/O*V29dV=—\j/|V9|2dV=j9*V9*dV (18)

and
\j}q&*v2¢dV:—j|V¢|2dV:j¢*V¢*dV (19)

~2 - - -
where ‘*’ denotes complex conjugate and ‘A‘ =A- A* for any vector A.

Proof: If 2, B ,and C are smooth vector-valued functions and ¥ is a smooth scalar-valued
function on V such that 4 x B, and ¥C vanish on S, then using Gauss’ divergence theorem
and the vector identities:

div(;l X E) =B-curl A— A-curl B
and - - -
div(YC)=V¥C +¥divC
it follows that:

[B-curl AdV = [4-curl BdV (20)
\% v
and R -
[V¥-CdV=[¥divCdV 1)
\% \%

Now integral relations (9)-(14) follow from eq. (20) by choosing 4 and B appro-
priately and integral relations (15)-(19) follow from eq. (21) by choosing ¥ and C appro-
priately.

This completes the proof of the lemma.

Theorem 1 : 1f (p, q, h,0, ), p=p,+ip;, 0<y<1/R3is anon-trivial solution of egs. (1)-(5)
together with either of the boundary conditions (6)-(7), Rt < 0, Rg < 0 and
|Rs| < ‘E|RT Kl —R3y/r>, then p, =0 = p; # 0.

Proof: Taking R :—|RT ,Rg :—|RS| and supposing p, = 0 = p; = 0 then p = 0, and
therefore eqgs. (1)-(5) become:

VP +curleurl § =Ry |0k +[R|¢B +Qeurl 7)x / (22)
V20 +R;yV2p=—G-k (23)

and .
V2 (th)=—q -k (24)
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curleurl 4 =curl (G - @) (25)

If £=6 —’E[ —E]gb then it follows from equations:
T

V2 =0 (26)
Further, in view of boundary conditions (6)-(7), we have either:
¢=0 or V{-n=0 on § (27)

The only solution of equation in V subject to either of the boundary condition in
eq. (27)is { = 0. Consequently eq. (22) assumes the form:

VP +curlcurlg :{—1|RT |(1 —&j+|RS|}¢[§ +Q(curl /1) 7 (28)
T

Taking dot product of eq. (28) with ¢ *, integrating the resulting equation over
the domain V and using Lemma 2, we get:

j|cur1¢7|2dV+jS?cuﬂ(c}x z)dv{|Rs|—r|RT|( —%ﬂw(q*-ﬁ)dv (29)
\' \%

Equation (29) upon using eqgs. (24) and (25) and then appealing to Lemma 2
yields the equation:

j|curlq|2dV+Qj‘cur1;€‘2dv={|RS|—T|RT|( _ﬂﬂﬂwfd\/ (30)
% % T v

It follows from eq. (30) that:

ol 12

a result contrary to the given hypothesis of the theorem. Hence p, = 0 = p; # 0. This
completes the proof of the theorem.
Theorem 1, in the parlance of linear stability theory, may be stated as follows.
PES is not valid for the hydromagnetic GSTHC if:

ol o 1

The following corollaries are direct consequences of Theorem 1:

Cor. 1 — PES is not valid for GSTHV if |RS | < 1|RT|[ —M],
T

143



THERMAL SCIENCE: Vol. 9 (2005), No. 1, pp. 139-150

Cor. 2 — PES is not valid for hydromagnetic initially top heavy GSTHC if

r{ —M}>l, and
T

Cor. 3 — PES is not valid for initially top heavy GSTHC if ‘c{l - ﬂ} >1.
T

Theorem 2:1f (p,q, 1.0, ©), p=p, +ip;,is anon trivial solution of egs. (1)-(5) with either
of the boundary conditions (6)-(7), Rt <0, Rg<0and t <6 < 1, then for large Q (or for
large |Rs| ifQ=0):

. 20= p; =0

I, if Rg<0, and Q=0

where 6= i, if R¢<0 and Q>0

G

Proof: Taking Rt =|RT |, Rg = —|RS| and using the transformations:

§-1""0+¢
133Y
q=q
h=h
eq. (1)-(7) assume the forms:
LG =P —curlcurl § —|R}:|0p +[R&|¢- B +Q(curl h)x I (32)
o
(V?—p)o=-Bg-p (33)
(V- p)p=—4-B (34)
curlcurlh + 221 7 =curl(g x @) (35)
o
V.G=0, V-h=0 (36)
with -
g=0=0=¢=nxcurlh on S 37)
or
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G=0=VO0-n=Vé-n=nxcurlh on S (38)

where Rt =R;R1y/(1-1), R§ =Rg +R%, B={l—(1-1)R5Y}, and the sign ‘~ has been
omitted for simplicity. Operating on eq. (32) by (6 curl curl +p) and using the vector
identities: - - -

curl(PA)=¥curl A +V¥ + 4

curl(Ax B)=(B-V)A—(A-V)B + AdivB
and

V(AxB)=(B-V)A+(A-V)B +Bcurl A+ Axcurl B

with an appropriate choice of 7, 2, and B , it follows that:

2
p(1+éjcurlcurlé +p—c} + pVP -
c o

~[R&[(STV (div ¢3) ~V *$B1+ i) -
R | {51V (div 0B) -~V 201} +

+QI8[ Ixcurleurleurl 2 =V (/xcurleurl 7) — p(curl /1) x 1]} =
(39)
=—§curlcurlcurlcurl g

Taking the dot product of eq. (39) with g *, integrating the resulting equation
over the domain V and Lemma 2, we have:

2 ~
p(1+§jj|cur1§|2 + £ [|g]*av - R%|[ (V26 - p)(g * )dV+
S v Cv . Voo .
HR|[ (8¢ pp)(g *-B)AV + pQ[ h curl(g - £)dV +
\' )\

+Q8 [eurleurl & curl(g - £)dv =
v (40)
=-5 I g curlcurlcurlcurl gdV
v

Since Q (the ratio of magnetic to viscous forces) is very large, the effect of vis-
cosity is thus significant near the bounding surfaces and in the above equation the inte-
gral on the right hand side (resulting from the viscous forces) is negligible in comparison
with the last integral on the left hand side (resulting from the magnetic force) [6]. Conse-
quently, taking the right hand side of eq. (40) to zero, eliminating (g * 8*) and (g * x¢*)
from the resulting equation by using egs. (33)-(35) and then appealing to Lemma 2, we
get:
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p(l+§)j|cur151|2dV+p—2j|c7|2dV+|R'T|j[6<v20>2+|p|2|0|2]dV+|R'T|(p*5+p)-
[Fofav-iwa| 6(\V29\ ol jdv Rl 0o o v
+QI 6‘curlcur1h‘ Ao ‘h‘ av+
+Q{ p*oo 1+plﬂcurlh‘ av=0 (41)

Equating the imaginary past of eq. (41) to zero and assuming p; # 0, we get:

1+= |||curlg dV+ q| dV+|RT|1-9)| V6| dV +
(12 e+ 22 v el o

+|RS|(5—T) I Vg dv=0 (42)
\'%

Equation (42) cannot obviously be satisfied under the conditions of the theorem.
Hence we must have p; =0

This comples the proof of the theorem.

Theorem 2 implies that the hydromagnetic GSTHC on arbitrary neutral or unsta-
ble mode is definitely non-oscillatory in character and in particular PES is valid if
16, <6 <G,. Further, this theorem also implies the validity of this result for the GSTHC
ift<l.

Theorem 3:1f (p,q,0,9, h) p=p,+ip;, p,20,p;#0is anon-trivial solution of egs. (1)-(5)
together with the boundary conditions (6) and Rt <0, Rg <0, and 6 > 1 then for large Q
(or for large |RS| if Q=0):

|pl< SRy [(5-1)B> +|R ]

where & = fza//l (o+0),0 is as in Theorem 2 and /and A are as in Lemma 1.

Proof: 1t follows from eq. (23) that:
2 2 27 Al
[(V20- po)(V20*—p*0*)dv =B | ‘q : ﬁ‘ av (43)
v v
Equation (43) upon using Lemma 2 gives:

2,2 2 2 (v (15 A4
'Vﬂv 9‘ dV+2p,i|V9| dv+|p) \J;|9| v \J;‘q Bl av (44)
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Equation (44), upon using p, > 0, p; # 0 give:

I|9|2d\/< B_zﬂc;.ﬁfdvs ﬁﬂ(ﬂzd\/ (45)
\% \%

A"

Again multiplying eq. (33) by 8%, integrating over the domain V, using Lemma
2 and equating the real parts of the resulting equation, we have:

Vo dv + p, [|6]°dV =Real £ B-[6*|G-plav<
i| | +p i | ca part (6] l ‘q ‘ <

<

b [0+ ﬁ)dv‘g 5 oli-Alav
\4 \Y%

which upon using Schwartz’s inequality and the fact that p, > 0, gives:
v

l|v9|2dv<B.LI/|9|ZdIVTHB_ﬂc;./éfldvﬂ <
sBM@VWT[B.J/dejr o

Combining inequalities (45) and (46), we get:
j Vo) dv< 5B I lg|"av (47)
A 5

\%

Further, the solenoidal character of the velocity field g namely div g =0, implies
that:
-2 - - - 2
J.|cur1q| dV:j(q *curlcurlq)de—Iq *v 25 dV
% v v

which upon taking ¢ = (u, v, w) gives:
I lcurlg|’dv= j(|w|2 H{Vo]* vl v (48)
% %
Equation (48) together with Lemma 1 yields the inequality:
- 0? -2
j |qy|dV<7 I lcurl g|*dv (49)
% %

Inequalities (47) and (49) implies that:
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Ve[ dv< B;_j [feurl g dv (50)
\% \Y%

Similarly proceeding from eq. (34), and emulating the steps in the derivation of
inequality (50), we have:

[Ive|"dv< !

2
1 51
) l‘cp|\j,|cur| dv (51)

Using inequalities (5) and (51) in eq. (42), we get:

("; S }{ p‘—3<|R'T |(5-1)B +[Rg|)} [|eurl q|2dV+
A\

#2211 v + 8JRs | [V av<0 (52)
G v A%

Inequalities (52) clearly implies that:
| p|<3[|R'T|(5—1)B 2 +[R4[]

This completes the proof of the theorem.

Theorem 3 implies that the complex growth rate of an arbitrary oscillatory perturbation
which may be neutral or unstable for the hydromagnetic GSTHC lies inside a semi-circle

’ ( J
: 1

Radius = S[[R;|(§ —1)B? +[R§

in the right half of the complex p-plane.

Conclusion

The present paper investigates the instability of Dufour-driven thermosolutal
convection of a fluid completely confined in an arbitrary region bounded by rigid walls in
the presence of a uniform magnetic field applied in an arbitrary direction. It has been
found that Principle of exchange of stabilities is not valid for the hydromagnetic general-
ized Stern’s thermohaline configuration if |RS|S ’I:|RT El—(Rﬂ/ 1)] Secondly, for large
Chandrasekhar number and © < 6 <1, a neutral or unstable mode is definitely non oscilla-
tory in character and in particular PES is valid. Finally the complex growth rate of an ar-
bitrary oscillatory perturbation which may be neutral or unstable lies inside a semi-circle
with centre origin and radius = 5[|R’T |(5 -1)B 2 +|R’S|] in the right half of the complex
p-plane. Further, the results for the horizontal layer geometry in case of single-diffusive
or double diffusive fluids follows as a consequence by taking A= n?, [ = 1 respectively.
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Nomenclature

d — depth of layer, [m]

g — acceleration due to gravity, [m/s’]
h — magnetic field, [Gs]

P — pressure, [Pa]

p — growth rate, [1/s]

Q — Chandrasekhar number, [—]

q — velocity, [m/s]

Rs — solutal Rayleigh number, [—]
Rr — thermal Rayleigh number, [-]
R; — gradient ratio, (= B'/B), [-]

t

— time, [s]

Greek letters

S AV AgAQ<TAARDI R HTI™IRK

— coefficient of thermal expansion, [1/K]
— coefficient of solute expansion, [1/K]
— uniform temperature gradient, [K/m]
— uniform concentration gradient, [K/m]
— ratio of two Rayleigh numbers, [-]

— Dufour number, [—]

— ratio of two Prandtl numbers, []

— electrical resistivity, [m%/s]

— perturbation in temperature, [K]

— thermal diffusivity, [m?/s]

— mass diffusivity, [m™/s]

— kinematic viscosity, [m?/s]

— Prandtl number, (= v/x), [-]

— magnetic Prandtl number, (= v/n), [-]
— density, [kg/m’]

Lewis number, (= k'/x), [-]

— perturbation in concentration, [Kg]
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