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Many systems with non-linear heat and mass transfer processes might
be unstable at certain conditions. Small disturbances might bring out
them of their equilibrium state, after which they achieve itself to a new
stable state. The method developed here concerns a non-linear analysis
of hydrodynamic stability of the systems with intensive heat and mass
transfer. It allows the determination of the kinetic energy distribution
between the main flow and the disturbance, when the equilibrium
value of the disturbance amplitude is determined.
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Introduction

Many systems with non-linear heat and mass transfer processes might be unstable
at certain conditions 1 . Small disturbances bring them out of their equilibrium state, after
which they achieve itself to a new stable state. As a result the disturbances amplitude of
self-organized dissipative structure is a constant.

The linear theory of stability 2 allows the determination of parameters of the
stable condition, but it could not determine the amplitude of dissipative structures.

The theoritical analisis of self-organized dissipative structures is possible only in
the approximation of non-linear theory of stability 3, where the disturbances could be
significant.

Mathematical model
As an example a gas (liquid) laminar boundary layer with intensive heat and mass

transfer 1, leading to a change of velocity distribution in the laminar boundary layer is
considered below. For this particular case the Prandtl equations are:
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~ o 1
x=0, u=u; y=0, u=a,, Vv=>by;
Yy, uU=u
The last boundary condition for egs. (1) is usually substituted by:
ou
=0, —=c¢ 2
y dy 0 (2)

and ¢, is determined in order to satisfy the last boundary condition of egs. (1).

In egs. (1) and (2) @ and v are the components of the velocity, x and y are the
co-ordinates, v is the kinematic viscosity, and a, by, and ¢ are the boundary conditions,
which might conform (correspond) to various effects at the phase boundary (y = 0) such as
motion of the second phase, occurrence of secondary flows as a result of the non-linear heat
and mass transfer.

The existence of disturbances in the system (u', v/, p’) leads to their interaction
with the main flow (&7, V'), which creates a new main flow (i, v, p). The new flow (U, V, P) is
non-stationary because of the non-stationary character of the disturbances:

U(x, y,t)=u(x, y,t)+u'(x, y,t)
V(x, y,t)=v(x, y,t)+V'(x, y,) 3)
P(xa y:t):p(x7 yat)"'p,(xv y7t)

The new flow defined by eqgs. (3) satisfies the full system of Navier-Stokes
equations:

U,y 2U .y oU_ 1 0P, U[o’”Uﬁ_ZUJ
ot 6x Oy p Ox ox*  0y?
OV V.,V _ 10P, U[@2V+52VJ @
ot ox oy  p oy ox?  oy*
0"U av ~0
6x 6y

We can introduce egs. (3) into egs. (4) and eliminate the pressure using the
differentiation and subsequent subtracting of the first two equations in eqs. (4). The
following result is obtained:

2 2
al//+(u+u)—+(v+v)——u oy OV
ot ox*  0y*?
r 2 2.
oy’ ——+(u +u)—+(v+v) =v i l//+6W 5)
ot ox ﬁy ox ay
@ é’v ~0 o"u o"v -0

ox é’y  ox o"y
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Where Ju Oy , ou' oV
y=2t- and y =52 ©6)
Jdy Ox oy Ox
Thus, egs. (5) stresses on the segregation of the effects:
— the first equation renders the influence of disturbance over the main flow,
— the second equation renders the influence of main flow over the disturbance.
However the influences in both equations have non-linear character.

Form of the disturbances

The particular solutions of eqs. (5) in the form of “normal” disturbances, i. e.
periodic disturbances which amplitude depends exponentially of time will be commented
further:

u(x, y7t) =exp(—a)t)u0 (xa y)

v(x, y,t) =—exp(—a)t)j Iy d
ox (7)
u'(x, y,t)=exp(—wt)[vy (x, y)+u, (x, y)sin nx+ v, (x, y)cos nx]
V'(x, y, 1) =—exp(—wt) %+(% —nv, jsinnx+(ﬁ +nuy Jcosnx dy
ox ox Ox

The substitution of the egs. (7) into egs. (5) allows the determination of a stable
dissipative structure at @ = 0. This partial solution depends on the eigenvalues, values of
the wave number n = 2w/, where 4 is the wave length of disturbance.

As a result we have two equations for u,v, ©, and v, corresponding to the egs.
(5), where cos? nx = 1 - sin® nx. From these equations it is possible to obtain a set of
equations, if we put their apperiodical parts and all parts containing sin rx, cos nx, sin’ nx,
and sin 7x cos nx to be equal to zero.

Set of equations

From apperiodical parts we can obtain directly two equations in order to
determine uq and vy:

2 3 A 2 52
(g +vo)| Lo [ 210 g, —( Tt gy [0 dyj Ouy  OTuo |
ox dy ox3 Ox ox ox? dy?

4 3 3
_o| [ Lt dy+2 Ouy , Oty (8a)
ox* oxtoy oy’
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o* o° i 0* o?
(g +vo )| —20 4 [ L Y0 gy || 2o gy| £ 20, 2 Yo |
Ox O’Jy é’x3 Ox é’xz 0”y2
o* o° o°
=v :0 dy+2 2V0 + ‘;0 -
Ox ox“Jdy Oy
o? i o° o? i
-V L4 T Moy L g2 O —n3u1 dy |+
oxdy Oy ox® ox? Ox

2 2
+ o + ] +2n u —n?y, ﬂ+nul dy (8b)
0 Ox

ox* 0 y2 x
The periodical part in the equation for u' contains terms with sin nx and cos nx

(after the summing up separately the parts containing sin x and cos x and equalization of
these sums in separate to zero):

o? o3 o° o2 0
u ad U 1430 dy |+ L;o + “20 (nv1 _Zh ]dy:O
Ox Oy ox ox Oy Ox

5? PR oy & 2 ©)
V| ad U atl dy |- Yo, 2 % nu, + 24 dy=0
ox O y O x3 é’xz o yz Ox
By analogy, from the terms with sin zx and cos nx in the equation for v' we have
two equations for determination of «; and v;:

2 3 2
0 0 0 0
Uy o uy Ly B \2}1 _3p2 20 +n3v1 dy |-
ox Oy oy ox® Ox Ox

_J‘ Ou, dy[ A%u, N d%u, o ov, _”ZulJ:

ox é’y2 ox* ox
ola u Iy 52 O
ox? dy Ox Oy ady
+ 54“1 o™ 2 97 +4n° —1 +n4u1 dy+ 53”1 -
ox* ox® ox? X oy?

98



Boyadjiev, C., Doichinova, M.: A Method for Stability Analysis of the Non-Linear ...
o%u,  0* o o oty 07 o
+ ad PR ) P —ntu, Yo dy+ Y, 2 Y “ —nv; |dy (10a)
oxt oy? ox ox oxt  oy? ox
Zh o o’ o? o
u A B A P R —n’u, |dy|-
Ox Oy oy x> Ox2 Ox

_J‘ &uO dy[ 52\/1 +52V] +on 5141 —nZVIJ:

Ox oxt 0y? Ox
o3 o? 0
—o[2-F0 4 EEL 02 0y
ox” 0y ox Oy oy

o4 a3 e a R
+ M o4n 28 2 2N —4n3i+n4vl dy+ -
ox* ox® ox? Ox

ox? X
o°? o2 G
[ 3 ‘;1 B v21 +2n ;1 —nzvl Jj—ody+
X y X
o°? o2 G
+[ ﬁx‘;o + 5);0 }J.[ 0’";1 +nu1jdy (10b)

From the terms with sin? zx and sin 7x cos nx we have:

o* o N 2 o
u a = R o —3n? ad +n3v1 dy |-
Ox Oy oy ox3 Ox? Ox

o? o* o 2
- L;l + u21 . —nzu1 ( ad —nvljdy—
Ox Jy ox ox

52 P 3 2
—vll M, 2l +j[a LI ¥ ] —3n? M —n3u1 dy |+

n
Ox Oy oy ox> A2 Ox
2 2 A
+ on + o 1202 2y ﬂ+nu dy=0 (11a)
ox* oy* ox : Ox :

99



THERMAL SCIENCE: Vol. 8 (2004), No. 1, pp. 95-105

2 3 2
u o +n ou, + o™ +3n 0w -3n’ hd —n’uy |dy |+
Ox Oy oy x> Ox? Ox

2 3 2
+v1{ o, +J‘[a 3, 0N 3,2 Z% +n3v1)dy]—
X

ox 0y Oy ox ox’?
2 2
i + o +2n il —n’v, (0’)”1 _nvljdy_
O 8y* Ox ox
2 2
| 9y . o7y Com ov —n’u, [0"\/1 +nu1de=0 (11b)
2 é’y2 Ox ox

Here must be marked that the right hand side of eq. (8b) is different if we put
sin?nx = 1 — cos? nx. On the other hand from the eq. (11a) can be seen that for these two
cases the right hand sides are equal.

2

Similarity variables

The solution of egs. (1) can be expressed in similarity variables:

F=TFE), V= |SEEF F), &=yl (12)
4x X
Introducing of variables (12) into egs. (1) leads to the following:
2F" + FF" =0
(13)

(=0, F=a, F'=b, F"=c

where a, b, and ¢ are determined in advance taking into account the movement of the
second phase, the secondary flows, etc. (see, for example, 1).
Those similarity variables can be also introduced into egs. (8)-(11):

ug =ufg (&), vo =uPey (&), w =upf’ (&), v =ufe’(), P= (14)

SR

where i and i, are characteristic velosities of the main flow and disturbances and f3 is the
dimensionless amplitude of the disturbances.

The problem will be solved in approximation of the laminar boundary layer
theory, i. e. in zero approximation of the small parameter 2

y’=0 (15)
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where 5V ox Ty
y? :[—j =Re "%, 5= , Re=— (16)
v

x E
In this approximations (y? = 0) A, 8, and Re are parameters:

A =n5=%Re*”2 = Ay, A, =% (17)

because the dependence of parameters on x is very weak.

In similarity variables (14) § is small parameter and problem will be solved in zero
approximation of the small parameter 52, 2 = 0.

The introduction of similarity variables (14) and approximation (15) in eqs. (8a)
and (8b) leads to the equations for f; and ¢y :

215"+ (fo +Bey)fs =0 (18a)
200 +(fo +Beo g =0 (18b)

The introduction of similarity variables (14) and approximation (15) in eqs. (9a)
and (9b) leads to the conditions:

2 !
6H+ f 6’:
f=24,0

20’ . (19)

p-24,17""

From egs. (19) and the eq. (18a) are obtained the conditions:

274

- 2fr - 2(,0'
Jo +Bog _f—2A0g0_¢+2A0f (20)

The introduction of eq. (20) in eqs. (18) leads to:

" 2 ' "
2 —2L pro
f=24,¢

" 2(/’/ ” (21)

200 + ————
Do ¢+2A0f¢0

The introduction of similarity variables (14) and approximation (15) in egs. (10a)
and (10b) leads to the equations for fand ¢:
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21" S ST oS+ 20 S50 BRS¢ S + 790+ )+ 2840 (900" ~90F) =0
20" + 30"+ fo@" =2A0 fo /" + B0 9f + 0" 0l + 9" 9o+l ) (22)

—2B4y (9o /"~ fpg)=0
With the approximations (8% = 0, * = 0) used, the eqs. (11) are eliminated.
The boundary conditions are obtained using two considerations:

(1) boundary conditions for F and f; are equal, and
(2) the dependences of the disturbances from the main flow are identical in the volume
and at the interface.
From eq. (13) follows:

F(0)=a, F'(0)=b, F"(0)=c

_F'(0)F(0) _ ac

F"! 0 —
(0) > >
2 (23)
FIV(O):_E+£
2 4
2 3
FV(0)=_0_+3abc_a_c
2 4 8

where F'V(0) and F"(0) were obtained after double differentiation of eq. (13).
From eq. (18a) follows:
25 S
Bfy B
By double differentiation of eq. (24) and introduction of & = 0 in ¢y, ¢, and ¢;
and using eq. (24) allows the determination of boundary conditions in f; and ¢

) = (24)

fo(0)=a, f3(0)=b, fy=c

(25)
(00 (0)207 (PE) (0): 07 (pg =0
From the conditions (20) is directly obtained:
21" =(fo +Boo ) f—2409)
(26)

20" =(fo +Boo N@+24, 1)

If we note 1 = f(0) and @, = ¢(0), we could determine from egs. (26) boundary
conditions for eq. (22) after differentiation of eqgs. (26) and use of eq. (25):
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fO)=ay, f(0)=7 (@ ~24ya;)
2
f”(O)=%(b+%—2A§a2J—Aoaz(a2 +b) (27a)

f’"(O):a—zl(c+3i2b—6abAg +ia3 —3aA} )—azAO(c+ 3ab+%a3 —a*4})

, a
p(0)=a,, ¢ (O)ZE(az +240a,)

(p"(O):AOal(az+b)+a72(b+%a2—2a2A§j (27b)

3ab

<p’"(0)=“72(c+7—6ab/102 +%a3 ~3q342 J+a1AO(C+ 3ab+§a3 —a*A} )

where a; and a, are eigenvalues of the problem.

Determination of

The parameter § might be determined from the condition that the kinetic energy

E of the main flow is distributed between the energy of new flow E; and the energy of
disturbance E:

E=Ey+E (28)

If we assume that in all three cases kinetic energies are proportional to the velocity
square summed in the area of the boundary layer (s):

E~|[[@’dxdy, E,=[[u*dxdy, E, =][u'*dxdy (29)
() () ()

we obtain (o = 0):

E~

o

5 6
(j)ﬁzdydxzﬁzéz,(j)zf’zdg

20 2 2 6 5
Ey ~[[ugdydx=u“0A[ fo°d&
00 0 (30)
28 ,
E, ~[[(vy +u sin nx+ v, cos nx)” dydx =
00

="25w2(?<062d§+1?f'2d§+l(f¢’2d§j
0 20 20
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The introduction of the expressions (30) in eq. (28) allows the determination of 5:

6 12 6 r2
Fras-f st .
ﬁ:
Torae+ 1] r2ae L prae
0 20 20

Method of solution

The eqs. (21) and (22) with boundary conditions (25) and (27) present an
eigenvalues problem where a, a,, 8, and A are eigenvalues. They may be determined
from condition for minimum of the least square function Q:

Oy, az B, Ao) = Bir — B (32)

where i = 0, 1, 2, ... is the iteration number in the minimum search procedure of the
function Q. The problem is reduced to the combined (joint) solving of eq. (21) and (22)
with the corresponding boundary conditions (25) and (27). The first step in the solving is
to assign initial values of a1, @, 8, and A, determine 8 and then search for which values
of ay, a,, and A the function Q has a minimum.

Conclusions

The proposed method for non-linear analysis of hydrodynamic stability in systems
with intensive heat and mass transfer use the kinetic energy distribution between the main
flow and the disturbances for determination of the equilibrium amplitude value of the
disturbances.
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Nomenclature

a, by, ¢, — boundary conditions

n — wave number

78 — x component of the velocity, [m/s]

— y component of the velocity, [m/s
— coordinates, m

=<
<
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Greek letters

Jij — amplitude of the disturbance, —
y — small parameter

A — wave-length of disturbance

v — kinematic viscosity, m?/s
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