THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

External Links

online first only

Nanofluid flow comprising gyrotactic microbes through a porous medium - a numerical study

ABSTRACT
Researchers have significantly contributed to heat transfer field and always made out much effort to find new solutions of heat transfer augmentation. In the concerned work, we have presented a novel study regarding heat and mass transfer flow of nanofluid in the presence of gyrotactic microbes through a porous medium past a stretching sheet. The nonlinear coupled ODEs are obtained after applying the persuasive tool of similarity transformation on governing model PDEs and then tackled numerically by exploiting the SOR (Successive over Relaxation) parameter method. The outcomes of assorted parameters for the flow are surveyed and discussed through graphs and tables. A graphical comparison is correlated with previously accomplished study and examined to be in an exceptional agreement. The culminations designate that the bioconvection Peclet number and microorganism concentration difference parameter enhance density of the motile microorganisms. Moreover, porosity parameter substantially increases shear stress on sheet surface. The addition of nanoparticles in microorganisms is beneficial to improvise the thermal efficiency of many systems like bacteria powered micro-mixers, microfluidics devices like micro-volumes and enzyme biosensor, microbial fuel cells and bio-microsystems like chip-shaped microdevices.
KEYWORDS
PAPER SUBMITTED: 2019-12-07
PAPER REVISED: 2020-09-26
PAPER ACCEPTED: 2020-10-16
PUBLISHED ONLINE: 2020-11-07
DOI REFERENCE: https://doi.org/10.2298/TSCI190712332A
REFERENCES
  1. Mutuku, W. N., Makinde, O. D., Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Comput. Fluids., 95 (2014), pp. 88-97
  2. Md. Tausif, S. K., Kalidas, D., Kundu, P. K., Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles, J. Mol.Liq. 220 (2016), pp. 518-526
  3. Acharya, N., Kalidas, D., Kundu, P. K., Framing the effects of solar radiation on magnetohydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms, J.Mol. Liq., 222 (2016), pp. 28-37
  4. El Gamal, A. A., Biological importance of marine algae, Saudi Phar. J. 18 (2010), pp. 1-25 doi.org/10.1016/j.jsps.2009.12.001
  5. Khan, W. A., Makinde, O. D., Khan, Z. H., MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, Int. J. Heat Mass Transf., 74 (2014), pp. 285-291
  6. Stewart, T. L., Fogler, H. S., Biomass plug development and propagation in porous media, Biotech. Bioeng. 72 (2001), pp. 353-363
  7. Kuznetsov, A. V., The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Transfer, 37 (2010), pp. 1421-1425
  8. Ramzan M, Chung J D, Naeem U., Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation, I. J. Mech Sci., (2017), 130, pp. 31-40
  9. Chakraborty, T., Kalidas, D., Kundu, P. K., Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions, Alexandria Engg. J., 57 (2018), pp. 61-71
  10. Rashidi, M. M., Ghahremanian, S., Toghraie, D., Roy, P., Effect of solid surface structure on the condensation flow of Argon in rough nanochannels with different roughness geometries using molecular dynamics simulation, Int. Commu. Heat Mass Transf., 117 (2020), 104741 doi.org/10.1016/j.icheatmasstransfer.2020.104741
  11. Rashad, A. M., Rashidi, M. M., Lorenzini, G., Ahmed, S. E., Aly, A. M., Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu-water nanofluid. International Journal of Heat and Mass Transfer, 104 (2017), pp. 878-889. doi:10.1016/j.ijheatmasstransfer.2016.08.025
  12. Alsaedi, A., Ijaz, K. M., Farooq, M., Gull, N., Hayat, T., Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Advanced Powder Technology 28 (2017), pp. 288-298
  13. Shahid, A., Zhou1, Z., Bhatti, M. M., Tripathi, D., Magnetohydrodynamics nanofluid flow containing gyrotactic microorganisms propagating over a stretching surface by Successive Taylor Series Linearization Method, Microgravity Sci. Technol., 30 (2018), 4, pp. 445-455 doi.org/10.1007/s12217-018-9600-2
  14. Aziz, A., Khan, W. A., Pop, I., Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyrotactic microorganisms, Int. J. Therm. Sci., 56 (2012), pp. 48
  15. Mohebbi, R., Rashidi, M. M., Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. Journal of the Taiwan Institute of Chemical Engineers, 72, (2017), pp. 70-84. doi:10.1016/j.jtice.2017.01.006
  16. Shen, B., Zheng, I., Zhang, c., Zhang, x., Bioconvection heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump, Thermal Science., 21 (2017), 6A, pp. 2347-2356
  17. Ahmad, S., Ashraf, M., Ali, K., Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls, J. Therm. Anal. Calorim., (2020) doi.org/10.1007/s10973-020-09542-w
  18. Ahmad, S., Ashraf, M., Ali, K., (2020). Heat and mass transfer flow of gyrotactic microorganisms and nanoparticles through a porous medium, Int. J. Heat Tech., 38 (2020), pp. 395-402
  19. Ahmad, S., Ashraf, M., Ali, K., Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium, J. Appl. Mech. Tech. Phys., 60 (2019), 996-1004
  20. Ahmad, S., Ashraf, M., Ali, K., Nanofluid flow comprising gyrotactic microorganisms through a porous medium, JAFM., 13 (2020), pp. 1539-1549
  21. Ashraf, M., Kamal, M.A., Syed, K.S., Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk, App. Math. Model., 33 (2009), pp. 1933-1943
  22. Ashraf, M., Kamal, M.A., Syed, K.S., Numerical simulation of flow of micropolar fluids in a channel with a porous wall, Int. J. Numer. Meth. Fl., 66 (2011), pp. 906-918
  23. Ahmad, S., Ashraf,M., Ali, K., Micropolar Fluid Flow with Heat Generation through a Porous Medium, PUJM., 52(4) (2020), pp. 101-113.
  24. Hildebrand, F. B., Introduction to Numerical Analysis. Tata McGraw-Hill Publishing Company: New Delhi, (1978)
  25. Rashidi, M. M., Vishnu Ganesh, N., Abdul Hakeem, A. K., Ganga, B., Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq., 198 (2014), 234-238 doi:10.1016/j.molliq.2014.06.037