THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

An analytical solution for solving a new wave equation within Lorenzo-Hartley kernel

ABSTRACT
In this article we investigate the general fractional-order derivatives of the Riemann-Liouville type via Lorenzo-Hartley kernel, general fractional-order integrals and the new general fractional-order wave equation defined on the definite domain with the analytical solution.
KEYWORDS
PAPER SUBMITTED: 2018-10-11
PAPER REVISED: 2019-01-11
PAPER ACCEPTED: 2019-01-28
PUBLISHED ONLINE: 2019-06-08
DOI REFERENCE: https://doi.org/10.2298/TSCI181011258G
REFERENCES
  1. Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, New York, CRC Press, 2019
  2. Caputo, M., et al., A New Definition of Fractional Derivative without Singular Kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 2, pp.73-85
  3. Mittag-Leffler, G., Sur la Représentation Analytique d'une Branche Uniforme d'une Fonction Monogène: Cinquième Note, Acta mathematica, 29(1905), 1, 101-181
  4. Rabotnov, Y., Equilibrium of an Elastic Medium with After-Effect, Fractional Calculus and Applied Analysis, 17(2014), 3, pp.684-696
  5. Miller, K. S., et al., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993
  6. Yang, X. J., et al., Fundamental Solutions of Anomalous Diffusion Equations with the Decay Exponential Kernel, Mathematical Methods in the Applied Sciences, 2019, April, DOI: 10.1002/mma.5634
  7. Yang, X. J., et al., Fundamental Solutions of the General Fractional-Order Diffusion Equations, Mathematical Methods in the Applied Sciences, 41(2018), 18, pp.9312-9320
  8. Lorenzo, C. F., et al., Generalized Functions for the Fractional Calculus, Critical Reviews in Biomedical Engineering, 36(2008), 1, pp.39-55