TY - JOUR TI - Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower AU - Ahmadikia Hossein AU - Soleimani Mohsen AU - Gholami Ehsan JN - Thermal Science PY - 2013 VL - 17 IS - 2 SP - 443 EP - 455 PT - Article AB - To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT), a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.