TY - JOUR TI - Exploring the optimal design of computer control system for heating boilers in power plants AU - Mao Jia AU - Sun Qi AU - Wang Ju JN - Thermal Science PY - 2020 VL - 24 IS - 5 SP - 3269 EP - 3278 PT - Article AB - Objective: For stable and efficient control of the heating boilers in power plants, an improved Smith-fuzzy PID algorithm is used to optimize the computer control system for heating boilers. Methods: Under the computer control system, the pressure, exhaust gas temperature, water temperature, safety, and energy consumption of heating boilers are explored, thereby determining the optimization effect of the computer control system. Results: The improved Smith-fuzzy PID algorithm has the optimal control effect on water temperature and pressure of the heating boilers, with the highest balance and stability. In comparison, the fluctuations in temperature control curves under Smith-PID and PID algorithms are large. Compared with the exhaust gas temperature of the other two algorithm systems, the exhaust gas temperature of the improved Smith-fuzzy PID algorithm-based computer system is reduced by 40 °C, which decreases the consumption of coal resources. Conclusion: The improved Smith-fuzzy PID algorithm-based heating boiler computer control system has the most prominent effects on water temperature, pressure, and exhaust gas temperature. The designed system is accurate and reliable, satisfying the actual design requirements of computer control systems for heating boilers.