TY - JOUR TI - Impact of point thermal bridges on thermal properties of building envelopes AU - Šadauskienė Jolanta AU - Ramanauskas Juozas AU - Vasylius Algimantas JN - Thermal Science PY - 2020 VL - 24 IS - 3 SP - 2181 EP - 2188 PT - Article AB - During the design of energy-efficient buildings with a ventilated façade systems, the evaluation of point thermal transmittance is complicated. It requires additional theoretical knowledge, special software and skills to use it. Because of that, point thermal transmittance is often ignored in practice. The dependence of point thermal transmittance, which is appearing because of aluminum fixing elements used in the insulated wall with ventilated façade system, from the thermal and geometrical properties of construction layers are analyzed in this paper. Research has shown, that thermal properties of the supporting wall, where fixing element is located, had the biggest influence on the point thermal transmittance. When thermal conductivity of the supporting wall was increasing, as well as a thickness of the insulation layer, a value of thermal bridge was increasing in a non-linear way. For this reason, the thermal transmittance coefficient of all construction could increase up to 35%. When the thickness of the supporting wall and thermal conductivity of the insulation layer was increased, the value of point thermal bridge was decreasing. The tests revealed strong dependency of the point thermal bridge on the thermal conductivity of bearing layer material and the thickness of the bearing layer of wall. For this reason, thermal bridges should receive greater consideration. It is not enough to use the diagrams of typical fasteners that very often do not take into account the exact thickness and thermal characteristics of materials