TY - JOUR TI - The optimization of pressure controller for deep earth drilling AU - He ZhiQiang AU - Chen Ling AU - Lu Tong AU - Xie Jing JN - Thermal Science PY - 2019 VL - 23 IS - 13 SP - 877 EP - 885 PT - Article AB - Obtaining samples of deep in-situ conditions is first step to explore the mysteries of the earth requires. In view of the current problems of insufficient pressure maintaining capacity of the existing equipment, we independently developed the in-situ fidelity coring system and designed the osmotic pressure controller based on the geometry of square cover. The finite element method is used to analyze the pressure maintaining capacity of the pressure controller. It is found that it would produce large deformation and stress concentration when the pressure was applied on, resulting in low pressure maintaining capacity. Then the structural optimization schemes of conical sealing contact surfaces with 25°, 35°, 40°, and 45° apex angles and spherical sealing contact surface are proposed, and the spherical contact surface structure is found to be optimal. Finally, the material is optimized, and a higher strength material such as 45CrNiMoVA alloy is used. Based on the pressure controller with spherical contact surface, the pressure maintaining capacity increased to nearly 70 MPa. The research results obtained in this paper provide the basis for the development of the coring system, the deep exploration of the earth and the establishment of rock mechanics theory.