TY - JOUR TI - Numerical investigation of the transient spray cooling process for quenching applications AU - Baleta Jakov AU - Qi Fengsheng AU - Živić Marija AU - Lovrenić-Jugović Martina JN - Thermal Science PY - 2018 VL - 22 IS - 5 SP - 1943 EP - 1953 PT - Article AB - Water spray quenching distinguished itself as a promising method for industry production, especially for the parts which require good mechanical strength while simultaneously retaining the initial toughness. Studies have shown that the heat transfer process during the spray quenching is mostly influenced by the spray impingement density, particle velocities and sizes. The application of advanced numerical methods still plays insufficient role in the development of the production process, in spite of the fact that industry today is facing major challenges that can be met only by development of new and more efficient systems using advanced tools for product development, one of which is CFD. Taking the above stated, the object of this research is numerical simulation of spray quenching process in order to determine validity of mathematical models implemented within the commercial CFD code Fire, especially droplet evaporation/condensation and droplet-wall heat transfer model. After review of the relevant literature suitable benchmark case was selected and simulated by employing discrete droplet method for the spray treatment and Eulerian approach for the gas phase description. Simulation results indicated that existing droplet/wall heat transfer model is not able to reproduce heat transfer of dense water spray. Thus, Lagrangian spray model was improved by implementing experimental correlation for heat transfer coefficient during spray quenching. Finally, verification of the implemented model was assessed based on the conducted simulations and recommendations for further improvements were given.