TY - JOUR TI - TEMPERATURE CONTROLLER OPTIMIZATION BY COMPUTATIONAL INTELLIGENCE AU - Ćojbašić Žarko M AU - Ristanović Milan R AU - Marković Nemanja R AU - Tešanović Stefan Ž JN - Thermal Science PY - 2016 VL - 20 IS - 15 SP - 1541 EP - 1552 PT - Article AB - In this paper a temperature control system for an automated educational class-room is optimized with several advanced computationally intelligent methods. Controller development and optimization has been based on developed and extensively tested mathematical and simulation model of the observed object. For the observed object cascade P-PI temperature controller has been designed and conventionally tuned. To improve performance and energy efficiency of the system, several meta-heuristic optimizations of the controller have been attempted, namely genetic algorithm optimization, simulated annealing optimization, particle swarm optimization and ant colony optimization. Efficiency of the best results obtained with proposed computationally intelligent optimization methods has been compared with conventional controller tuning. Results presented in this paper demonstrate that heuristic optimization of advanced temperature controller can provide improved energy efficiency along with other performance improvements and improvements regarding equipment wear. Not only that presented methodology provides for determination and tuning of the core controller, but it also allows that advanced control concepts such as anti-windup controller gain are optimized simultaneously, which is of significant importance since interrelation of all control system parameters has important influence on the stability and performance of the system as a whole. Based on the results obtained, general conclusions are presented indicating that meta-heuristic computationally intelligent optimization of heating, ventilation, and air conditioning control systems is a feasible concept with strong potential in providing improved performance, comfort and energy efficiency.