TY - JOUR TI - Impact of heat transfer analysis on Carreau fluid-flow past a static/moving wedge AU - Ali Hashim AU - Khan Masood JN - Thermal Science PY - 2018 VL - 22 IS - 2 SP - 809 EP - 820 PT - Article AB - The foremost aspiration of the present endeavor is to investigate the boundary-layer flow of a generalized Newtonian Carreau fluid model past a static/moving wedge. In addition, the effects of heat transfer on the flow field are also taken into account. The governing equations of the problem based on the boundary-layer approximation are changed into a non-dimensional structure by introducing the local similarity transformations. The subsequent system of ODE has been numerically integrated with fifth-order Runge-Kutta method. Influence of the velocity ratio parameter, the wedge angle parameter, the Weissenberg number, the power law index, and the Prandtl number on the skin friction and Nusselt number are analyzed. The variation of the skin friction as well as other flow characteristics has been presented graphically to capture the influence of these parameters. The results indicate that the increasing value of the wedge angle substantially accelerates the fluid velocity while an opposite behavior is noticed in the temperature field. Moreover, the skin friction coefficient for the growing Weissenberg number significantly enhances for the shear thickening fluid and show the opposite behavior of shear thinning fluid. However, the local Nusselt number has greater values in the case of moving wedge. An excellent comparison with previously published works in various special cases has been made.