TY - JOUR TI - Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation AU - Raja Ayyanan Samuel AU - Valan Arasu Amirtham JN - Thermal Science PY - 2014 VL - 18 IS - 1 SP - 179 EP - 191 PT - Article AB - The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm) and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start). The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.