TY - JOUR TI - Numerical modeling of a turbulent semi-confined slot jet impinging on a concave surface AU - Ahmadi Hadi AU - Rajabi-Zargarabadi Mehran AU - Mujumdar Arun S AU - Mohammadpour Javad JN - Thermal Science PY - 2015 VL - 19 IS - 1 SP - 129 EP - 140 PT - Article AB - This article presents results from a numerical study of a turbulent slot jet impinging on a concave surface. Five different low Reynolds number k-ε models were evaluated to predict the heat transfer under a two dimensional steady turbulent jet. The effects of flow and geometrical parameters (e.g. jet Reynolds number and jet-to-target separation distance) have been investigated. The Yap correction is applied for reducing the over-prediction of Nusselt number in the near wall region. It is shown that among the models tested in this study, the LS-Yap model is capable of predicting local Nusselt number in good agreement with the experimental data in both stagnation and wall jet region. Moreover, after implementation of Yap correction, no significant effect of the nozzle-to-surface distance, h/B, on the predicted stagnation Nusselt number has been found. Finally it is demonstrated that the higher values of turbulent Prandtl number reduces the heat diffusion along the wall and consequently the predicted local Nusselt number is reduced especially in the wall jet region.