THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

SOME KANNAN TYPE FIXED POINT RESULTS IN RECTANGULAR SOFT METRIC SPACE AND AN APPLICATION OF FIXED POINT FOR THERMAL SCIENCE PROBLEM

ABSTRACT
The intention of current study to survey Kannan type mappings for rectangular soft metric space. Some Kannan type results are obtained by using rectangular soft metric and an application for thermal science problem is presented.
KEYWORDS
PAPER SUBMITTED: 2018-11-02
PAPER REVISED: 2018-11-20
PAPER ACCEPTED: 2019-01-01
PUBLISHED ONLINE: 2019-03-09
DOI REFERENCE: https://doi.org/10.2298/TSCI181102035O
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Supplement 1, PAGES [S215 - S225]
REFERENCES
  1. Molodtsov D., Soft Set Theory-First Result, Comput. Math. Appl., 37 (1999), pp. 19-31
  2. Maji P. K, Biswas R. and Roy A. R., Soft Set Theory, Comput. Math. Appl., 45 (2003), pp. 555-562
  3. Aras Ç.G., Sönmez A., Çakallı H., On Soft Mappings, ArXiv, Computers & Mathematics with Applications, 60 (2013), 05/2013,9
  4. Aras Ç. G.G., Poşul H., On Some New Operations in Probabilistic Soft Set Theory, European Journal of Pure and Applied Mathematics, 9 (2016), 3,pp. 333-339
  5. Shabir M., Naz M., On soft topological spaces, Computers & Mathematics with Applications, 61 (2011), 7, pp. 1786-1799
  6. Zorlutuna İ., and Çakır H., On Continuity of Soft Mappings, Appl. Math. Inf. Sci. 9 (2015), 1, pp. 403-409
  7. Bildik N., Bakır Y., Mutlu A., The New Modified Ishikawa Iteration Method for the Approximate Solution of Different Types of Differantial Equations, Fixed Point Theory and Applications, 52 (2013), pp. 1-29.
  8. Gülyaz S., İnci M.E., Existence of Solutions of Integral Equations via Fixed Point Theorems, Journal of Inequalities and Applications, 138 (2014), pp. 1-15
  9. Qiu Y., Solving A Class of Boundary Value Problems by LSQR, Thermal Science, 21 (2017), 4, pp. 1719-1724
  10. Bayram M., Hatipoğlu V.F., Alkan S., Das S.E., A Solution Method for Integro- Differential Equations of Conformable Fractional Derivative, Thermal Science, 22 (2018), Suppl. 1, pp. S7-S14
  11. Bayram M., Büyüköz G.O., Partal T., Parameter Estimation in A Black-Scholes Model, Thermal Science, 22 (2018), Suppl. 1, pp. S117-S122
  12. Das S., Samanta S.K., Soft Metric, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 1, pp. 77-94
  13. Hosseinzadeh H., Fixed Point Theorems on Soft Metric Spaces, Journal of Fixed Point Theory and Applications, 19 (2017) 2, pp 1625-1647
  14. Branciari A., A Fixed Point Theorem of Banach-Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debrecen, 57 (2000), pp. 31-37
  15. Mutlu A., Yolcu N., Mutlu B., Fixed Point Theorems in Partially Ordered Rectangular Metric Spaces, British Journal of Mathematics and Computer Science, 15 (2016), 2, pp.1-9
  16. Öztunç S., Mutlu A., Aslan S., Soft Fixed Point Theorems for Rectangular Soft Metric Spaces, 2. International Students Science Conference, 4-5 May 2018, İzmir/Turkey, Abstract Book, pp.102
  17. Öztunç S., Mutlu A., Aslan S., Soft Fixed Point Theorems for Kannan Type Mappings by Using Rectangular Soft Metric, International Conference on Mathematics:An Istanbul Meeting for World Mathematicians, 3-6 July 2018, İstanbul /Turkey, Abstract Book, pp. 334
  18. Kannan R., Some results on fixed point, Bull. Cal. Math. Soc., 60 (1968), pp. 71-76
  19. Kannan R., Some results on fixed point II, Amer. Math. Monthly, 76 (1969), pp. 405-408
  20. Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund Math. 3 (1922), pp.133-181

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence