THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

AN APPROXIMATE ESTIMATION OF VELOCITY PROFILES AND TURBULENCE FACTOR MODELS FOR AIR-FLOWS ALONG THE EXTERIOR OF TEFC INDUCTION MOTORS

ABSTRACT
Compared to a number of other existing correlations for heat transfer, the empirical correlations for forced convection from a short horizontal cylinder in axial air-flows usually do not involve the effects of changes in air-flow velocity and/or air-flow turbulence. Therefore, a common analysis of the heat transfer by using only one energy balance equation for entire outer surface of a solid is considered insufficient for induction motor applications because it fails to include aforementioned effects. This paper presents a novel, empirically-based methodology to estimate approximately the values of air-flow velocities and turbulence factors, that is, velocity profiles and turbulence factor models for stationary horizontal cylinders with and without fins (frame and two end-shields) in axial air-flows. These velocity profiles and turbulence factor models can then be used in analytical modelling of steady-state heat transfer from the exterior of totally enclosed fan-cooled induction motors.
KEYWORDS
PAPER SUBMITTED: 2015-06-26
PAPER REVISED: 2016-04-22
PAPER ACCEPTED: 2016-04-22
PUBLISHED ONLINE: 2016-05-08
DOI REFERENCE: https://doi.org/10.2298/TSCI150626090K
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 3, PAGES [1515 - 1527]
REFERENCES
  1. Kovalev, E. B., Burkovskii, A. N., Tokarenko, A. T., Heat release in channels between frame-ribbing of enclosed asynchronous motors, Elektrotekhnika 36 (1965), 11, pp.27-29.
  2. Heiles, F., Über die zweckmäßige Gestaltung und Anordnung von Kühlrippen, Elektrotechnik und Maschinenbau 69 (1952), 14, pp.323-331.
  3. Chanson, H., Applied Hydrodynamics: An Introduction, CRC Press, Taylor & Francis Group, LLC, Leiden, Netherlands, 2014, pp.253-286.
  4. Di Gerlando, A., Vistoli, I., Improved thermal modelling of induction motors for design purposes, in: IET Sixth International Conference on Electrical Machines and Drives (Conf. Publ. No. 376), Oxford, GB, 1993, pp.381-386.
  5. Kylander, G., Thermal modelling of small cage induction motors, Ph.D. thesis, School of Electrical and Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, 1995.
  6. Hewitt, G. F., Hall-Taylor, N. S., Annular Two-Phase Flow, Pergamon Press, Oxford, GB, 1970.
  7. Balachandran, P., Engineering Fluid Mechanics, PHI Learning Private Limited, New Delhi, India, 2011, pp.232-275.
  8. Webster, J. G., Eren, H., Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, second ed., CRC Press, Taylor & Francis Group, LLC, Boca Raton, USA, 2014, pp.57.6-57.8.
  9. Holland, F. A., Bragg, R., Fluid Flow for Chemical Engineers, second ed., Butterworth-Heinemann, Oxford, GB, 1995, pp.85-88.
  10. Staton, D. A., Cavagnino, A., Convection heat transfer and flow calculations suitable for electric machines thermal models, IEEE Transactions on Industrial Electronics 55 (2008), 10, pp.3509-3516.
  11. Romo, J. L., Adrián, M. B., Prediction of internal temperature in three-phase induction motors with electronic speed control, Electric Power Systems Research 45 (1998), 2, pp.91-99.
  12. Valenzuela, M. A., Tapia, J. A., Heat transfer and thermal design of finned frames for TEFC variable speed motors, in: IEEE Proceedings of 32nd Annual Conference on IEEE Industrial Electronics - IECON 2006, Paris, France, 2006, pp.4835-4840.
  13. Valenzuela, M. A., Tapia, J. A., Heat transfer and thermal design of finned frames for TEFC variable-speed motors, IEEE Transactions on Industrial Electronics 55 (2008), 10, pp.3500-3508.
  14. Valenzuela, M. A., Tapia, J. A., Rooks, J. A., Thermal evaluation of TEFC induction motors operating on frequency-controlled variable-speed drives, IEEE Transactions on Industry Applications 40 (2004), 2, pp.692-698.
  15. Huai, Y., Melnik, R. V. N., Thogersen, P. B., Computational analysis of temperature rise phenomena in electric induction motors, Applied Thermal Engineering 23 (2003), 7, pp.779-795.
  16. Boglietti, A., Cavagnino, A., Staton, D., Determination of critical parameters in electrical machine thermal models, IEEE Transactions on Industry Applications 44 (2008), 4, pp.1150-1159.
  17. Boglietti, A., Cavagnino, A., Staton, D. A., Thermal analysis of TEFC induction motors, in: IEEE Conference Record of the 2003 IEEE Industry Applications Conference - 38th IAS Annual Meeting, Salt Lake City, UT, USA, 2003, vol. 2, pp.849-856.
  18. Boglietti, A., Cavagnino, A., Staton, D. A., TEFC induction motors thermal models: A parameter sensitivity analysis, IEEE Transactions on Industry Applications 41 (2005), 3, pp.756-763.
  19. Fernández, X. M. L., Coimbra, A. P., Pinto, J. A. D., Antunes, C. L., Donsión, M. P., Thermal analysis of an induction motor fed by unbalanced power supply using a combined finite element - symmetrical components formulation, in: IEEE Proceedings of the 1998 International Conference on Power System Technology - POWERCON 98, Beijing, China, 1998, vol. 1, pp.620-624.
  20. Mendes, A. M. S., López-Fernández, X. M., Cardoso, A. J. M., Thermal evaluation of TEFC three-phase induction motors under different supply frequencies, in: IEEE Proceedings of the 18th International Conference on Electrical Machines - ICEM 2008, Vilamoura, Portugal, 2008, paper ID 1069, pp.1-6.
  21. Valenzuela, M. A., Tapia, J. A., Rooks, J. A., Effect of protective covers for TEFC induction motors covered by pulp, in: IEEE Conference Record of the 2006 Annual Pulp and Paper Industry Technical Conference, Appleton, WI, USA, 2006, pp.1-7.
  22. Valenzuela, M.A., Millar, M., Tapia, J. A., Rooks, J. A., Thermal derating of TEFC induction motors coated or partially flooded by spilled pulp, in: IEEE Conference Record of the 2004 Annual Pulp and Paper Industry Technical Conference, 2004, pp.8-14.
  23. Moon, S.-H., Yun, J.-H., Kim, W.-G., Kim, J.-P., Thermal-flow analysis and cooling performance enhancement of a totally enclosed fan-cooled motor, in: IEEE Proceedings of 2013 International Conference on Electrical Machines and Systems - ICEMS 2013, Busan, Korea, 2013, pp.2028-2030.
  24. KMMP, Electric Motors & Components, Kurt Maier Motor-Press GmbH, Kalefeld, Germany, 2014.
  25. Koyasu, E., Ito, T., New series standard induction motor with class E insulation, Fuji Electric Review 10 (1964), 4, pp.130-136.
  26. Wiberg, R., Lior, N., Heat transfer from a cylinder in axial turbulent flows, International Journal of Heat and Mass Transfer 48 (2005), 8, pp. 1505-1517.
  27. Kobus, C. J., Shumway, G., An experimental investigation into impinging forced convection heat transfer from stationary isothermal circular disks, International Journal of Heat and Mass Transfer 49 (2006), 1-2, pp. 411-414.
  28. Kobus, C. J., Wedekind, G. L., An experimental investigation into forced, natural and combined forced and natural convective heat transfer from stationary isothermal circular disks, International Journal of Heat and Mass Transfer 38 (1995), 18, pp. 3329-3339.
  29. ABB LV Motors, GB 02-2005, The Motor Guide - Basic Technical Information about Low Voltage Standard Motors, second ed., ABB, Finland, 2005, pp. 34-46.
  30. ABB Motors and Generators, 9AKK105285 EN 02-2014, The Motor Guide - Basic Technical Information about Low Voltage Standard Motors, third ed., ABB, 2014, pp. 24-39, 65.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence