THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A NOTE ON CATTANEO-HRISTOV MODEL WITH NON-SINGULAR FADING MEMORY

ABSTRACT
Using the new trend of fractional differentiation based on the concept of exponential decay law, the Cattaneo model of diffusion in elastic medium was extended by Hristov. This model displays more physical properties than the first version. However no solution of this new equation is suggested in the literature. Therefore, this paper is devoted to the analysis of numerical solution of the Cattaneo-Hristov model with non-singular fading memory.
KEYWORDS
PAPER SUBMITTED: 2016-04-21
PAPER REVISED: 2016-05-30
PAPER ACCEPTED: 2016-06-15
PUBLISHED ONLINE: 2016-12-03
DOI REFERENCE: https://doi.org/10.2298/TSCI160421298A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE 1, PAGES [1 - 7]
REFERENCES
  1. Ali, Y. M.; Zhang, L. C. "Relativistic heat conduction. Int. J. Heat Mass Trans.48 (12)(2005) pp.2397.
  2. Barletta, A.; Zanchini, E. (1997). "Hyperbolic heat conduction and local equilibrium: a second law analysis". Int. J. Heat Mass Trans. 40 (1997)(5), pp. 1007-1016.
  3. Xu, M.; Wang, L. (2002). "Thermal oscillation and resonance in dual-phase-lagging heat conduction". Int. J. Heat Mass Trans. 45(2002) (5), pp 1055.
  4. Cattaneo, C. R. "Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée". ComptesRendus247(1958)(4), pp. 431.
  5. Y.M. Ali, L.C. Zhang, Relativistic heat conduction. Int. J. Heat Mass Trans. 48 (2005), pp 2397.
  6. Y.M. Ali, L.C. Zhang, Relativistic moving heat source, Int. J. Heat Mass Trans. 48 (2005) pp.2741.
  7. Ali, A. H. "Statistical mechanical derivation of Cattaneo's heat flux law". J. Thermophys. Heat Trans. 13(1999) (4), pp.544-546
  8. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), pp. 73-85.
  9. A Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation.Applied Mathematics and Computation 273(2016), pp.948-956.
  10. A Atangana, JJ Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Advances in Mechanical Engineering 7(2015) (10), pp. 1-7.
  11. A Atangana, BST Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel.Entropy 17 (2015)(6), pp. 4439-4453.
  12. JF Gómez-Aguilar, T Córdova-Fraga, JE Escalante-Martínez, Electrical circuits described by a fractional derivative with regular Kernel.Revista Mexicana de Física 62(2016) (2), pp. 144-154.
  13. Abdon Atangana and IknurKoca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications 9(2016), pp. 2467-2480.
  14. EFD Goufo Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg--de Vries--Bergers equation, Mathematical Modelling and Analysis 21 (2016)(2), pp.188-198.
  15. Hristov J., Transient Heat Diffusion with a Non-Singular Fading Memory: From the Cattaneo Constitutive Equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2) (2016), pp.765-770.; DOI:10.2298/TSCI160112019H
  16. .Hristov J., Steady-State Heat Conduction in A Medium With Spatial Non-Singular Fading Memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions , in press; Thermal Science, 2016 OnLine-First (00):115-115; DOI:10.2298/TSCI160229115H;
  17. Atangana, Abdon; Baleanu, Dumitru, NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model. THERMAL SCIENCE : 20 (2) (2016) pp. 763-769 .
  18. Alsaedi, Ahmed; Baleanu, Dumitru; Etemad, Sina; et al. On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative, JOURNAL OF FUNCTION SPACES Article Number: 4626940 (2016)
  19. A NEW NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL SUB-DIFFUSION AND REACTION SUB-DIFFUSION EQUATIONS WITH A NON-LINEAR SOURCE TERM By: Bhrawy, Ali H.; Baleanu, Dumitru; Mallawi, Fouad. THERMAL SCIENCE : 19 (1) (2015) pp. S25-S34 .

© 2017 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence