THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

OPTIMAL PATHS OF PISTON MOTION OF IRREVERSIBLE DIESEL CYCLE FOR MINIMUM ENTROPY GENERATION

ABSTRACT
A Diesel cycle heat engine with internal and external irreversibility’s of heat transfer and friction, in which the finite rate of combustion is considered and the heat transfer between the working fluid and the environment obeys Newton’s heat transfer law [q≈ Δ(T)], is studied in this paper. Optimal piston motion trajectories for minimizing entropy generation per cycle are derived for the fixed total cycle time and fuel consumed per cycle. Optimal control theory is applied to determine the optimal piston motion trajectories for the cases of with piston acceleration constraint on each stroke and the optimal distribution of the total cycle time among the strokes. The optimal piston motion with acceleration constraint for each stroke consists of three segments, including initial maximum acceleration and final maximum deceleration boundary segments, respectively. Numerical examples for optimal configurations are provided, and the results obtained are compared with those obtained when maximizing the work output with Newton’s heat transfer law. The results also show that optimizing the piston motion trajectories could reduce engine entropy generation by more than 20%. This is primarily due to the decrease in entropy generation caused by heat transfer loss on the initial portion of the power stroke.
KEYWORDS
PAPER SUBMITTED: 2011-07-20
PAPER REVISED: 2011-09-14
PAPER ACCEPTED: 2011-09-16
DOI REFERENCE: https://doi.org/10.2298/TSCI110720100G
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE 4, PAGES [975 - 993]
REFERENCES
  1. Curzon, F. L., Ahlborn, B., Efficiency of a Carnot engine at maximum power output, Am. J. Phys., 43(1975), 1, pp. 22-24
  2. Andresen, B., et al., Thermodynamics for processes in finite time, Acc. Chem. Res., 17(1984), 8, pp. 266-271
  3. Bejan A., Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys., 79(1996), 3, pp. 1191-1218
  4. Berry, R. S., et al., Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999
  5. Chen, L., Wu, C., Sun, F., Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn., 24(1999), 4, pp. 327-359
  6. Sieniutycz, S., Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems, Phys. Rep., 326(2000), 4, pp. 165-285
  7. Salamon, P., et al., Principles of control thermodynamics, Energy, The Int. J., 26(2001), 3, pp. 307-319
  8. Hoffman, K. H., et al., Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn., 28(2003), 3, pp. 233-268
  9. Chen, L., Sun, F., Advances in Finite Time Thermodynamics: Analysis and Optimization,: Nova Science, New York, USA, 2004
  10. hen, L., Finite Time Thermodynamics Analysis of Irreversible Progresses and Cycles (in Chinese), High Education Press, Beijing, 2005
  11. Sieniutycz, S., Jezowski, J., Energy Optimization in Process Systems, Elsevier, Oxford, UK, 2009
  12. Feidt, M., Thermodynamics applied to reverse cycle machines, a review, Int. J. Refrig., 33(2010), 7, pp. 1327-1342
  13. Andresen, B., Current trends in finite-time thermodynamics, Angew. Chem. Int. Edit., 50(2011), 12, pp. 2690-2704
  14. Radcenco, V., Vasilescu, E. E., Feidt, R., Thermodynamic optimization of direct cycles, Thermotehnica, (2003), 1-2, pp. 26-31
  15. Mozurkewich, M., Berry, R. S., Finite-time thermodynamics: Engine performance improved by optimized piston motion, Proc. Natl. Acad. Sci. U.S.A., 78(1981), 4, pp. 1986-1988
  16. Mozurkewich, M., Berry, R. S., Optimal paths for thermodynamic systems: The ideal Otto cycle, J. Appl. Phys., 53(1982), 1, pp. 34-42
  17. Hoffman, K. H., Berry, R. S., Optimal paths for thermodynamic systems: The ideal Diesel cycle, J. Appl. Phys., 58(1985), 6, pp. 2125-2134
  18. Blaudeck, P., Hoffman, K. H., Optimization of the power output for the compression and power stroke of the Diesel engine, Proc. Int. Conf. ECOS'95, Volume 2: 754, Istanbul, Turkey, 1995
  19. Teh, K. Y., Edwards, C. F., Optimizing piston velocity profile for maximum work output from an IC engine, Proc. IMECE2006, IMECE2006-13622, 2006 ASME Int. Mech. Engng. Congress and Exposition, November 5-10, Chicago, Illinois, USA, 2006
  20. Teh, K. Y., Miller, S. L., Edwards, C. F., Thermodynamic requirements for maximum internal combustion engine cycle efficiency Part 1: Optimal combustion strategy, Int. J. Engine Res., 9(2008), 6, pp. 449-465
  21. Teh, K. Y., Miller, S. L., Edwards, C. F., Thermodynamic requirements for maximum internal combustion engine cycle efficiency Part 2: Work extraction and reactant preparation strategies, Int. J. Engine Res., 9(2008), 6, pp. 467-481
  22. Teh, K. Y., Edwards, C. F., An optimal control approach to minimizing entropy generation in an adiabatic internal combustion engine, Trans. ASME J. Dyn. Sys., Meas., Contr., 130(2008), 4, pp. 041008
  23. Teh, K. Y., Edwards, C. F., An optimal control approach to minimizing entropy generation in an adiabatic IC engine with fixed compression ratio, Proc. IMECE2006, IMECE2006-13581, 2006 ASME Int. Mech. Engng. Congress and Exposition, November 5-10, Chicago, Illinois, USA, 2006
  24. Ge, Y., Chen, L., Sun, F., Optimal paths of piston motion of irreversible Otto cycle heat engines for minimum entropy generation (in Chinese), Sci. China: Phys., Mech., Astron., 40(2010), 9, pp. 1115-1129
  25. Band, Y. B., Kafri, O., Salamon, P., Maximum work production from a heated gas in a cylinder with piston, Chem. Phys. Lett., 72(1980), 1, pp. 127-130
  26. Band, Y. B., Kafri, O., Salamon, P., Finite time thermodynamics: Optimal expansion of a heated working fluid, J. Appl. Phys., 53(1982), 1, pp. 8-28
  27. Salamon, P., Band, Y. B., Kafri, O., Maximum power from a cycling working fluid, J. Appl. Phys., 53(1982), 1, pp. 197-202
  28. Aizenbud, B. M., Band, Y. B., Power considerations in the operation of a piston fitted inside a cylinder containing a dynamically heated working fluid, J. Appl. Phys., 52(1981), 6, pp. 3742-3744
  29. Aizenbud, B. M., Band, Y. B., Kafri, O., Optimization of a model internal combustion engine, J. Appl. Phys., 53(1982), 3, pp. 1277-1282
  30. Band, Y. B., Kafri, O., Salamon, P., Optimization of a model external combustion engine, J. Appl. Phys., 53(1982), 1, pp. 29-33
  31. Burzler, J. M., Hoffman, K. H., Optimal piston paths for Diesel engines. Chapter 7 ‘Thermodynamics of energy conversion and transport', Sienuitycz S and De vos A, eds., Springer, New York, 2000
  32. Burzler, J. M., Performance Optimal for Endoreversible Systems, Ph. D. Thesis, University of Chemnitz, Germany, 2002, pp. 73-88
  33. Xia, S., Chen, L., Sun, F., Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law, Sci. China Ser. G: Phys., Mech., Astron., 52(2009), 5, pp. 708-719
  34. Ge, Y., Chen, L., Sun, F., The optimal path of piston motion of irreversible Otto cycle for minimum entropy generation with radiative heat transfer law, Submitted to J. Energy Inst.
  35. Chen, L., Sun, F., Wu, C., Optimal expansion of a heated working fluid with phenomenological heat transfer, Energy Convers. Manage., 39(1998), 3/4, pp. 149-156
  36. Song, H., Chen, L., Sun, F., Optimization of a model external combustion engine with linear phenomenological heat transfer law, J. Energy Inst., 82(2009), 3, pp. 180-183
  37. Chen, L., et al., Optimization of a model internal combustion engine with linear phenomenological heat transfer law, Int. J. Ambient Energy, 31(2010), 1, pp. 13-22
  38. Song, H., Chen, L., Sun, F., Optimal expansion of a heated working fluid for maximum work output with generalized radiative heat transfer law, J. Appl. Phys., 102(2007), 9, pp. 94901
  39. Ma, K., Chen, L., Sun, F., Optimal expansion of a heated gas under Dulong-Petit heat transfer law (in Chinese), J. Eng. Therm. Energy Pow., 24(2009), 4, pp. 447-451
  40. Chen, L., et al., Optimal expansion of a heated working fluid with convective-radiative heat transfer law, Int. J. Ambient Energy, 31(2010), 2, pp. 81-90
  41. Ma, K., Optimal Configurations of Engine Piston Motions and Forced Cool-down Processes, Ph. D. Thesis, Naval University of Engineering, China, 2010
  42. Ma, K., Chen, L., Sun, F., A new solving method for optimal expansion of a heated working fluid with generalized radiative heat transfer law (in Chinese), Chin. J. Mech. Eng., 46(2010), 6, pp. 149-157
  43. Ma, K., Chen, L., Sun, F., Optimization of a model external combustion engine for maximum work output with generalized radiative heat transfer law, J. Energy Inst., in press
  44. Chen, L., Ma, K., Sun, F., Optimal expansion of a heated working fluid for maximum work output with time-dependent heat conductance and generalized radiative heat transfer law, J. Non-Equilib. Thermodyn., 36(2011), 2, pp.99-122
  45. Taylor, C. F., The Internal Combustion Engine in Theory and Practice, Volumes 1 and 2, MA, Cambridge, 1977
  46. Biezeno, C. B., Grammel, R., Engineering Dynamics, Blackie, London, 1955, 4, pp. 2-5
  47. Andresen, B., Rubin, M. H., Berry, R. S., Availability for finite-time processes. General theory and a model, J. Chem. Phys., 87(1983), 15, pp. 2704-2713
  48. Shen, W., Jiang, Z., Tong, J., Engineering Thermodynamics (in Chinese), High Education Press, Beijing, 2001
  49. Radcenco V., et al., New approach to thermal power plants operation regimes maximum power versus maximum efficiency. Int. J. Therm. Sci., 46(2007), 12, pp. 1259-1266
  50. Sieniutycz S., Salamon P., Advances in Thermodynamics. Volume 4: Finite Time Thermodynamics and Thermoeconomics, Taylor & Francis, New York, 1990.

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence