THERMAL SCIENCE

International Scientific Journal

MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING-EFFECT OF REYNOLDS NUMBER

ABSTRACT
The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES). To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re ≤ 50000 and the Schmidt number is fixed at 1. The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.
KEYWORDS
PAPER SUBMITTED: 2009-10-27
PAPER REVISED: 2010-03-16
PAPER ACCEPTED: 2010-08-22
DOI REFERENCE: https://doi.org/10.2298/TSCI091027047M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE 2, PAGES [367 - 378]
REFERENCES
  1. Sigurdson, L.W., The structure and control of a turbulent reattaching flow. J. of Fluid Mechanics, 298 (1995), pp.139-165.
  2. Chun, K.B., Sung, H.J., Control of turbulent separated flow over a backward-facing Step by local forcing. Exp.Fluids, 21 (1996), pp. 133-142.
  3. Bhattacharjee, S., Scheelke B., and Troutt, T.R., Modification of vortex interaction in a reattaching seperated flow. AIAA, 24 (1986), pp. 623-629.
  4. Kiya, M., Shimizu, M., Mochizuki O., Sinusoidal forcing of a turbulent separation bubble. J. of Fluid Mechanics, (1997). 330 pp. 349-374.
  5. Chun, K.B., Sung, H.J., Visualization of a locally- forced separated flow over a backward-facing Step. Exp.Fluids, 25 (1998), pp. 417-426.
  6. Yoshioka, S., Obi., S., Masuda, S., Organized vortex motion in periodically perturbed turbulent flow over a backward-facing step. Int. J. Heat Fluid Flow, 22 (2001), pp. 301-307.
  7. Uruba, V., Jonas P., Mazur, O., Control of a channel-flow behind a backward-facing step by suction/blowing. Int. J. of Heat and Fluid Flow, 28 (2007), pp. 665-672.
  8. Oyakawa, K., Taira, T., Senaha I., Nosoko, T., Heat Transfer Control by using Jet Discharge in Reattachment Region Downstream of a Backward-facing Step. International Communications in Heat and Mass Transfer, 22 (1995), pp. 343-352.
  9. Velazquez A., Arias, J.R., Mendez, B., Laminar heat transfer enhancement downstream of a backward facing step by using a pulsating flow, Int. J. Heat Mass Transfer, 51 (2008), pp. 2075-2089.
  10. Mehrez, Z., Bouterra, M., El Cafsi, A., Belghith, A. Le Quéré, P., The influence of the periodic disturbance on the local heat transfer in separated and reattached flow, Journal of Heat and Mass Transfer, 46 (2009), pp. 107-112.
  11. Hwang, K.S., Sung, HJ., Hyun, J.M., Flow and mass transfer measurements for a flat plate of finite thickness in pulsating flow. Int. J of Heat and Mass Transfer 41 (1998), pp. 2827-2836.
  12. Younsi, M., Computational Analysis of MHD Flow, Heat and Mass Transfer in Trapezoidal Porous Cavity. Thermal Science Journal 13 (2009), pp. 13-22.
  13. Xu, P., Mujumdar, A.S., Poh, H.J., Yu, B., Heat Transfer Under a Pulsed Slot Turbulent Impinging Jet at Large Temperature Differences. Thermal Science Journal 14 (2010), pp. 271-281.
  14. Liu, J.T.C., Lee, K., On the growth of mushroomlike structures in nonlinear spatially developing GGertler flow. Phys. Fluids A-Fluid ,4 (1992),pp. 95-l 03.
  15. Giovannini, A., Marcos, V.B., Transfert de chaleur au voisinage du point de recollement en aval d'une marche descendante. Rev Gén Therm 37 (1997), pp. 89-102.
  16. Dumoulin, J., (1996). Caractérisation de l'écoulement sur une marche descendante: cas test n°1. Rapport final n°1/2568.00/CERT/DERMES., ONERA.
  17. Ta Phuoc, L.., Modèles de sous maille appliqués aux écoulements instationnaires décolles, DGA/DRET, Journée thématique DRET (1994).: Aérodynamique instationnaire turbulent, aspects numériques et expérimentaux, France.
  18. P. Sagaut.(1998). Introduction à la simulation des grandes échelles pour les écoulements de fluide incompressible. Book. Math. Springer-Verlag, Collection Mathématiques et applications 30, 282 pages.
  19. B.P.Leonard, Simple high accuracy resolution program for convection modelling of discontinuities, Int. J. for Num. Methods in fluids 8 (1988), pp. 1291-1318.
  20. Smagorinsky, J.S, General circulation experiment with the primitive equation .I. The basic experiment. Mon. Weather Rev, (1963), pp. 99-164.
  21. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A., 3 (1991), 1760-1765.
  22. Scharm, C., Rambaud, P., Riethmuller, M.L., Wavelet based eddy structure deduction from a backward facing step flow investigation using a particle image velocimetry. Exp. Fluids, 36 (2004), pp. 233-245.
  23. Bouda, N.N., Schiestel, Amielh, M., Rey, C., Benabid, T. Experimental approach and numerical prediction of turbulent wall jet over a backward facing step. Int. J. of Heat and Fluid Flow 29 (2008), pp. 927-944.
  24. Nagib HM; Reisenthel PH; Koga DJ (1985),. On the dynamical scaling of forced unsteady separated flows. AIAA Shear Flow Control Conference: AIAA-85-0553.
  25. Honami, S., Shizawa, T., Tsuchitani, H. (1993), Organized structures in the reattachment process in a backward-facing step flow. In: proceeding of the ninth symposium on turbulent shear flow, P108.
  26. Dejoan, A., Leschziner, M.A., Large eddy simulation of periodically perturbed separated flow over a backward-facing step. International Journal of Heat and Fluid Flow, 25 (2004), pp. 581-592.
  27. Hourigan, K., Welch, LW., Thompson, MC., Cooper, PI., Welsh, MC. Augmented forced convection heat transfer in separated flow around a blunt flat plate. Experimental Thermal and Fluid Science, 4 (1991), pp. 82-91.

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence