THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

COMMENTS ON GAS-FLUIDIZED MAGNETIZABLE BEDS IN A MAGNETIC FIELD PART 3: HEAT TRANSFER — A REEVALUATION OF THE DATA

ABSTRACT
In the last two decades a considerable number of communications have been appeared in the field of magnetic stabilization of gas-fluidized ferromagnetic particles. In contrast to the hydrodynamic problems, to the heat transfer problems (temperature distribution in both the axial and radial directions as well as gas-to-particles and bed-to immersed surface heat transfer) have been paid little attention. The present communication made an attempt to re-examine the data concerning the heat transfer phenomena in gas-fluidized beds of ferromagnetic particles controlled by external magnetic field.
PAPER SUBMITTED: 2000-01-10
PAPER REVISED: 2000-03-15
PAPER ACCEPTED: 2000-04-05
PUBLISHED ONLINE: 2020-08-16
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2000, VOLUME 4, ISSUE Issue 1, PAGES [5 - 49]
REFERENCES
  1. Hristov, J. Y., Comments on Gas-Fluidized Magnetizable Beds in a Magnetic Field, Part 1: Magnetization FIRST Mode, Thermal Science, 2 (1998) 2, pp. 3-25
  2. Hristov, J. Y., Comments on Gas-Fluidized Magnetizable Beds in a Magnetic Field, Part 2: Magnetization LAST Mode and Related Phenomena, Thermal Science, 3 (1999) 1-2, pp. 15-45
  3. Botterill, J.S. M., Fluid-Bed Heat Transfer, Academic press, London, 1975
  4. Zabrodsky, S. S., Hydrodynamics and Heat Transfer in Fluidized Beds, M. I. T. Press, 1966
  5. Kamholtz, K., Enhancing Characteristics of Magnetically Stabilized Fluidized Beds, US Patent, 4 143 168, 1979
  6. Levenspicl, O., Kamholtz, K., Enhancing Characteristics of Magnetically Stabilized Fluidized Beds, US Patent, 4 272 893, 1981
  7. Zabrodsky, S.S., Tambovtsev, Yu. I., A Possibility of a Magnetic Control of the Heat Transfer between a Surface and a Ferromagnetic Fluidized Bed, Vesti Acad. Nauk BSSR, Series of Physical and Energetic Sciences, 1 (1976), pp. 51-56
  8. Stepanchuk, A.V., Investigations on the Heat Transfer Between a Sphere and a Fluidized Beds with and without Application of a Magnetic Field. Vesti Acad. Nauk BSSR, 1 (1981), pp.157-162
  9. Stepanchuk, A.V., On the Possibilities of Heat Transfer Process Control in a Ferromagnetic Fluidized Bed, Inst. Heat Mass Transfer, Belarus Acad. Sci., Minsk, pp. 136-141
  10. Stepanchuk, A.V., Peculiarities of the Heat Transfer in a Fluidized Bed of Ferromagnetic Particles with an External Magnetic Field, Inst. Heat Mass Transfer, Belarus Acad. Sci., Minsk, (1984), pp. 110-114
  11. Saxena, S. C., Ganzha, V. L., Rahman, S. H., Dolidovich, A. F., Heat Transfer and Relevant Characteristics of Magnetofluidized Beds, Advances in Heat Transfer, 25 (1994), pp.151-249
  12. Bologa, M. K., Syutkin, S. V., Magnetic Field Effect on the Heat Transfer in a Fluidized Bed, Electronna. obrabotka materialov (Russia), 6, (1976), pp. 61-66
  13. Arnaldos, J., Estudi de lestabilitzacio dels Ilits fluidizacio solid-gas mitjancant l'aplicacio d'un camp magnetic, Ph. D. Thesis, Univ. Politechnica de Catalunya, Barcelona, 1985
  14. Arnaldos, J., Puigjaner, L., Casal, J., Heat and Mass Transfer in Magnetically Stabilized Fluidized Beds, . In: Fluidization V. (Ed., Ostergaard-Sorensen), Eng. Foundation, New York, 1986, pp. 425-432
  15. Arnaldos, J. Lazaro, M., Casal, J., The Effect of Magnetic Stabilization on the Thermal Behaviour of Fluidized Beds, Chem. Eng. Sci., 42 (1987), pp. 1501-1506
  16. Neff, J., Rubinsky, B., The Effect of a Magnetic Field on the Heat Transfer Characteristics of an Air Fluidized Bed of Ferromagnetic Particles, Int. J. Heat Mass Transfer, 16 (1983), pp. 1885-1889
  17. Ganzha, V. L., Saxena, S. C., Heat-Transfer Characteristics of Magnetofluidized Beds of Pure and Admixtures Magnetic and Nonmagnetic Particles, Int. J. Heat Mass Transfer, 41 (1988), pp. 209-218
  18. Qian, R. Z., Saxena, S. C., Heat Transfer from an Immersed Surface in a Magnetofluidized Bed, Jnt. Comm. Heat Mass Transfer, 20 (1993), pp. 859-869
  19. Dolidovich, A. F., Ganzha, V. L., Saxena, S. C., Rahman, S. H., The Magnetic Field Effect on the Particle Behaviour and the Heat Transfer Between an Immersed Horizontal Tube and a Gas magnetofluidized Bed, Fluidization IX, 1998, pp. 453-460
  20. Saxena, S. C., Dewan, S.S., Heat Transfer from a Horizontal Tube ina Magnetofluidized Bed, Int. Commn. Heat Mass Transfer, 23 (1996), pp. 655-664
  21. Zrunchev I. A, On the Effective Stability of Fluidized Catalyst Bed in a Magnetic Field, Ann. of UCTM, Sofia, 22 (1975), 3, pp. 121-127
  22. Zrunchev I. A., Popova, T. F., Catalytic Processes in Magnetic Structured Catalyst Beds, New Trend of Catalysis, Proceedings, 8" Int. Congress on Catalysis, vol. IV, (1984), pp. 847-858, Berlin, Germany
  23. Zrunchev I. A., Popova, T. F., Catalytic Processes in Magnetic Structured Catalyst Beds, New Trend of Catalysis, Proceedings, 9" Int. Congress on Catalysis, vol. 2 (1984), pp. 246-253, Calgary, Canada
  24. Selwood, P. W., Magnetochemistry, McGraw Hill, New York, 1956
  25. Licmelzs, J., Morgan, J. P., Magneto-Catalytic Effect in Ethylene Hydrogenation Reaction, Chem. Eng. Sct, 22 (1977), pp. 781-791
  26. Liemelzs, J., Aleman, H., External Magnetic Field Effect in Ethylene Hydrogenation Reaction over Nickel, Cobalt and Iron Catalyst, Chem. Eng. J., 5 (1973), pp. 129-135
  27. Bozorth, R. M., Ferromagnetism, Van Nostrand, 1951;
  28. Vissokov,G. P., Ivanov, D. G., Thermo-Magnetic Analysis of Catalysts for Ammonia Synthesis, Ann. of UCTM, Sofia, 22 (1975), 3, pp. 181-189
  29. Casal, J., Arnaldos, J., Heat and Mass Transfer in Magnetized Fluidized Beds, Trends in Heat, Mass and Momentum Transfer, I (1991), pp. 153-166
  30. Aerov, M. E., Todes, O. M., Hydraulic and Thermal Fundamentals of the Operations in Fixed and Fluidized Bed Apparatuses, Khimia, Leningrad, 1968
  31. Willhite, G. P., Kunii, D., Smith, J. M., Heat Transfer in Beds of Fine Particles (Heat Transfer Perpendicular to Flow), AIChE J, 8 (1962), 3, pp. 340-345
  32. Li, C. H., Finlayson, B. A. , Heat Transfer in Packed Beds — A Reevaluation, Chem. Eng. Sci., 32 (1977), pp. 1055-1066
  33. Beveridge, G. S. G., Haughey, D. P., Axial Heat Transfer in Packed Bed Beds. Stagnant Beds between 20 and 750 °C, Int. J. Heat Mass Transfer, 14 (1971), pp. 1093-1113
  34. Hristov, J. Y., Fluidization of Ferromagnetic Particles in a Magnetic Field. Part 1: The Effect of the Field Lines Orientation on Bed Stability, Powder Technology, 87 (1996), pp. 59-66
  35. Rosensweig, R. E., Fluidization: Hydrodynamics Stabilization with a Magnetic Field, Science, 204 (1979), pp. 57-60 .
  36. Rosensweig, R. E., Siegel, J. H., Lee, W. K., Mikus, T., Magnetically Stabilized Fluidized Solids, AIChE J., Symp. Ser., 77 (1981), 205, pp. 8-16
  37. Rosensweig, R. E., Process for Operating a Magnetically Stabilized Fluidized Bed, U.S. Patent 4 125 927, Sept. 24, 1980
  38. Hristov, J. Y., Fluidization of Ferromagnetic Particles in a Magnetic Field. Part 2: Field Effects of Preliminarily Fluidized Beds, Powder Technology, 97 (1998), pp. 35-44
  39. Brich, M. A., Ganzha, V. L., Saxena, S. C., On the Design of Hcat-Transfer Probes, Int. Comm. Heat Mass Transfer, 24 (1997), pp. 151-159
  40. Kunii, D., Levenspiel, O., Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Boston, 1991, pp. 1-13, pp. 69-75
  41. Kondraticv, G. M., Regular Heat Transfer Regime, M. GITTL, 1954, pp. 230-240
  42. Geiger, G. H.. Porier, D. R., Transport Phenomena in Metallurgy, Addison-Wesley, Reading, 1973, pp. 298-300
  43. Penchev, I. P., Hristov, J. Y., Behaviour of Fluidized Beds of Ferromagnetic Particles in an Axial Magnetic Field, Powder Technology, 61 (1990), pp. 103-118
  44. Penchev, I. P., Hristov, J. Y., Fluidization of Ferromagnetic Particles in a Transverse Magnetic Field, - Powder Technology, 62 (1990), pp. 1-11
  45. Geldart, D., Types of Gas Fluidization, Powder Technology, 7 (1973), pp. 285-292
  46. Kuniti, D., Levenspiel, O., Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Boston, 1991, pp. 1-13, pp, 69-75
  47. Jovanović, N. G., Colakyan, P., Jovanić, P., Vuković, D. V., Performance of Magnetically Stabilized Fluidized Beds, 8th Congress CHISA 84, paper No 767, Prague, Czech Republic, Sept. 3-7, 1984
  48. Jovanović, Z. R., Jovanović, G. N.,Vinjak-Novaković, G., Effect of Magnetic Field on Bubble Behaviour in Partially Stabilized Gas-Ferromagnetic Particles Fluidized Beds., Proceedings. 2nd Yugoslavian Chemical and Process Engineering, May 11-15, Dubrovnik, v. 2. (1987), pp. 30-34
  49. Ganzha, V. L., Upadyay, S. N., Saxcna, S. C., A Mechanistic Theory for the Heat Transfer between Fluidized Beds of Large Patticles and Immersed Surfaces, Int.J. Heat Mass Transfer, 25 (1982), pp. 1531-1540
  50. Ganzha, V. L., Heat and Mass Transfer in Dispersed Media with Two-Phase Flow., D. Sc. Thesis, Luikov Inst. Heat Mass Transfer (ITMO), Minsk, Belarus, 1992
  51. Saxena, S. C., Ganzha, V. L., Heat Transfer to Immersed Surfaces in Gas-Fluidized Beds of Large Particles and Powder Classification, Powder Technology, 39 (1984), pp. 199-208
  52. Krasnostchekov, E. A., Sukomel, A. S., Manual on Heat Transfer, 4th ed., Energia, Moscow, 1980

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence